W ramach naszego serwisu www stosujemy pliki cookies zapisywane na urządzeniu użytkownika w celu dostosowania zachowania serwisu do indywidualnych preferencji użytkownika oraz w celach statystycznych.
Użytkownik ma możliwość samodzielnej zmiany ustawień dotyczących cookies w swojej przeglądarce internetowej.
Więcej informacji można znaleźć w Polityce Prywatności
Korzystając ze strony wyrażają Państwo zgodę na używanie plików cookies, zgodnie z ustawieniami przeglądarki.
Akceptuję Politykę prywatności i wykorzystania plików cookies w serwisie.

Witold Pedrycz – Abstract

New Horizons of Machine Learning:

 Pursuing a Unified Data – Knowledge Environment

 

 

 

 

Witold Pedrycz

Department of Electrical & Computer Engineering

University of Alberta, Edmonton, Canada

wpedrycz@ualberta.ca

 

Abstract

 

Over the recent years, we have been witnessing truly remarkable progress in Machine Learning (ML) with highly visible accomplishments encountered, in particular, in natural language processing and computer vision impacting numerous areas of human endeavours. Driven inherently by the technologically advanced learning and architectural developments, ML constructs are highly impactful coming with far reaching consequences; just to mention autonomous vehicles, control, health care imaging, decision-making in critical areas, among others. 

 

Data are central and of paramount relevance to the design methodology and algorithms of ML. While they are behind successes of ML, there are also far-reaching challenges that require urgent attention especially with the growing importance of requirements of interpretability, transparency, credibility, stability, and explainability.   As a new direction, data-knowledge ML concerns a prudent and orchestrated involvement of data and domain knowledge used holistically to realize learning mechanisms and support the formation of the models.

 

The objective of this talk is to identify the challenges and develop a unique and comprehensive setting of data-knowledge environment in the realization of the development of ML models. We review some existing directions including concepts arising under the name of physics informed ML.

 

We investigate the representative topologies of ML models identifying data and knowledge functional modules and interactions among them. We also elaborate on the central role of information granularity in this area.