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Preface

There are many different types of structures and each structure has a specific function.
Some of them are simple, while others are complex. However they must be capable
of carrying the loads that they are designed for without collapsing. The main civil
engineering structures are buildings, towers or bridges. These structures are very
complex to analyze and design. It is important for a structural engineer to recognize
the various types of elements that compose a structure and to be able to classify and
analyze them. Simple examples of structures and parts of structures can be classified as:
beams, columns, frames, trusses or curved members (arches). The engineer should know
how loads are carried by structures. That is one of the most important aspects
of structural engineering that one needs to study. Current structural analysis
are computer based, but the engineer needs to be able to assess the computer-generated
results with a simple independent hand computation. The classical hand-computation-
-based procedures for finding the internal forces of the statically determinate bar
structures due to applied loading will be discussed in this textbook.

This textbook is intended for civil engineering students. Within each chapter,
the theoretical basis necessary to solve the problems are given (briefly). The com-
putational examples are presented in detail.

[ hope that the analysis of the presented examples will help in solving other statically
determinate elements of structures and will greatly facilitate the study of statically
indeterminate structures in the future.

At the same time, I will be extremely grateful for all the substantive comments
regarding this textbook.

Joanna Kretowska



1. Kinematical analysis and static determinacy
of planar bar structures

Civil engineering structures are connected to the ground at certain points called supports.
When the external loading is applied to the structure, the supports develop reactions
which oppose the tendency of the structure to move. The nature and number of reactions
depends on the type of support.

The term “structure” refers to a system of members with connected parts used
to support a load.

There are three types of planar motion for a rigid body: translation in the x direction,
translation in the y direction, and rotation about an axis normal to the x - y plane (¢)
(Fig. 1.1.a.). Hence, each body situated in one plane has three degrees of freedom - three
independent parameters determining its movement.
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Fig. 1.1. The planar body and the constraints.

A body is said to be stable when body motion is prevented. The possibility
of movement can be limited by using three motion constraints. If three specially arranged
support links will be put on a planar body, then it will be stable - without any possibility
of movement (Fig.1.1.c.). A structure with an exact number of constraints is called
a determinate structure.

If the planar body has less than three constraints, then some movement will be possible.
Such a body is called a mechanism. Fig. 1.1.b. presents one degree of freedom mechanism.
If more than three support constraints will be put on the planar body, then it is called
an indeterminate structure (no possibility of movement - Fig. 1.1.d.).



In the case where there is not one body but several bodies, the degrees of freedom
depend on the connections and supports.

1.1. Member connections and supports [1], [2], [3]

Structures are restrained against body motion by supports. When the structure is loaded,
reaction forces are developed by the supports.

In this chapter the different structure member connections and supports will
be discussed.

Link (constraint) - one-degree-of-freedom support kinematic pin joints, which limit
the possibility of movement in one direction (limit one degree of freedom).

Line element (member) - an element whose geometry is essentially one-dimensional,
i.e, one dimension is large with respect to the other two dimensions (cables, beams,
columns, arches).

Disk (planar body) - two dimensional rigid body.

Planar rigid body can be also formed by at system of line elements (members).

Support links:

e roller support - this support carries only shear forces between jointed members.
The roller support allows rotation about the support point and motion parallel
to the surface of contact but fully restrains motion in the direction perpendicular
to the surface. It can be represented by a single link, which limits the possibility
of movement in its direction (Fig. 1.2.) and limit one degree of freedom.

a) b)
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Fig. 1.2.

e hinged (pin) support - this support carries shear and axial forces but not moment
force between jointed members. It can be represented by two non-parallel links
and limits two degrees of freedom. The hinged support allows rotation about
the support point but doesn’t allow horizontal and vertical displacements (Fig. 1.3.).

a) b)
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Fig. 1.3.



e support with double parallel links - this support carries moment and shear forces
between jointed members. This kind of support doesn’t allow vertical displacement
of the support point and doesn’t allow rotation about the support point. It limits two
degrees of freedom (Fig. 1.4.).

a)
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Fig. 1.4.

e fixed support - this support carries moment, shear and axial forces between jointed
members. This kind of support is prevented from translating and rotating. It can be
represented by three non-parallel links and limits three degrees of freedom (Fig. 1.5.).

a) b)
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Fig. 1.5.

e hinged (pin) connections (one-degree-of-freedom kinematic pin joints) - this
connection carries shear and axial forces but no moment force between jointed
members. Hinged connection allows the jointed members to have different
rotations but the same displacements. It can be represented by two non-parallel links
and limits two degrees of freedom (Fig. 1.6.).

a) b)

Fig. 1.6.

Hinges that connect m elements can be represented by 2(m - 1) links, so it will limit
2(m - 1) degrees of freedom.

1.2. Kinematic stability of planar structures [1], [2]

Every two dimensional deformable planar element has three degrees of freedom (two
displacements and one rotation). By using different support links, we control these
degrees of freedom so the elements cannot move in the limited direction.



In case we have no one planar body but several numbers, the degrees of freedom
depends on the body’s connection and supports:
f=3t-r-2s (1.1)
where:
f - number of degrees of freedom (mobility),
t - number of planar bodies (disks) (the basic disk - ground (terra) is not counted),
s - number of one-degree-of-freedom kinematic pin joints,
r - number of support links.

The numbers of s is calculated by the formulae: s = (m - 1), where m is the number
of members connected at the pin joint.
If there are one-element-closed-loops:
f=3(t-2)-r-2s (1.2)
where:
z - number of closed loops.

In the example presented in Fig. 1.7.d. and Fig. 1.7.f. we have closed loops composed
respectively of 5 elements and of 3 elements (no one-element-closed-loop), so z = 0.
In the example presented in Fig. 1.7.b. we have one-element-closed-loop, so z = 1.

a) b) c)
| y .
l = |I
L A b VAN
f=3(2-0)-4-2=0 f=3(1-1)-5-0=-5 f=3(2-0)-7-2=-3
d) e) b f)
- l
|
|
vAs VAN
f=3(2-0)-3-2=1
f=3(5-0)-5-10=0 f=3(3-0)-5-6=-2

Fig. 1.7.

The number of degrees of freedom f may be positive, negative or zero. So we have
three different cases for f:
f> 0 - the system is mechanism, an unstable system (the structure can’t carry any load),
f=0 - stable system,
f < 0 - stable system, but there are too many support links necessary for the system to be stable.



In general, a planar body with three nonconcurrent coplanar constraints (links)
is stable for planar loading (Fig. 1.8.).

a) b) c)
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Fig. 1.8.

It is possible for a construction to be determinate and to be mechanism at the same
time. This phenomenon is called kinematical instability and such a system - mechanism.
So the upper formulas give us information only for the number of links but not for
the kinematical stability. That is why a kinematical analysis is needed.

Fig. 1.9. and Fig. 1.10. present these problems. Fig. 1.9. shows kinematical stable bodies.
In Fig. 1.9.a. the direction of support links A and B intersect in point O as a rotating point
but support link C obstructs this rotation so the structure is stable. Fig. 1.10.a. shows
the kinematical unstable body. When the reactive forces are all parallel the translation in
the horizontal direction is possible. In Fig. 1.10.b. and Fig. 1.10.c. the direction of the
support links intersect at the same point. As a result the rotation is possible and the body is
unstable.

#

Fig. 1.10.

In the case presented in Fig. 1.11. we have two bodies with the real hinge between
them.
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Fig. 1.11.
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In case a) the first disk has two support links that intersect in common hinge A and the
second one also has two support links that intersect in common hinge B. There is one real
hinge C between these two disks. The three hinges A, B and C are not lying at one line,
that is why the system is a stable one. In case b) the three hinges are lying at one line and
that is the reason the system is unstable.
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Fig. 1.12.

As we can see above, initial instability occurs when the constraints (links)
are insufficient or are not properly arranged to resist applied external forces. In this case,
the structure will fail under an infinitesimal load. This condition can be corrected
by modifying the location of the supports or by including additional constraints. Fig. 1.12.
presents kinematical stable systems.

1.3. Statically determinate planar structures [2]

The aim of structural analysis is to evaluate the external reactions, the deformed shape
and internal stresses in the structure. If this can be accomplished by equations
of equilibrium, then such structures are known as determinate structures.

However, in many structures it is not possible to determine either reactions
or internal stresses or both using equilibrium equations alone. Such structures are known
as statically indeterminate structures.

The indeterminacy in a structure may be external, internal or both. A structure is said
to be externally indeterminate if the number of support reactions exceeds the number
of equilibrium equations.
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The degree of static indeterminacy of a planar structure can be expressed by the formula:

n=(r+2s)-3t (1.3)
where:
n - degree of static indeterminacy of planar structures,
t - number of planar bodies (disks) (the disk - ground (terra) is not counted),
s - number of one-degree-of-freedom kinematic pin joints,

s=(m - 1), where m is the number of members connected at the pin joint,
r - number of support links.

The degree of static indeterminacy n may be positive, negative or zero. So we have
three different cases for n:

e n=0-determinate structure - it is possible to analyze the structure by using only
equilibrium conditions,

e n <0 -mechanism - in the case of mechanism we don’t have a structure carrying
any load, the structure is not stable,

e n>0-indeterminate structure - itis not possible to analyze the structure by using
only equilibrium conditions, additional equations are needed.

If there are one-element-closed-loops the degree of static indeterminacy can be calculated
by using the formula:
n=(r+2s)-3(t-2z) (1.4)

where z - number of one-element-closed-loops.

Computational example

Calculate the degree of static indeterminacy of planar structures presented
in Fig. 1.13. degree of static indeterminacy n = (r + 2s) - 3(t - z)

P

| |
- % |

Ly A ha TAY

S er e n=5+0-3(1-1)=5 n=7+2-3(2-0)=3
- |
I

WA VAN

n=3+2-3(2-0)=-1 B -
n=5+10-3(5-0)=0 n=5+6-3(3-0)=2

Fig. 1.13.
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2. Internal forces in statically determinate
planar bar structures

There are many different types of structures and each of them has a specific function.
Some structures are simple, while others are complex.

In this chapter, we will consider the procedure of analysis of elementary (statically
determinate) structures like simply supported beams, cantilever beams, compound
beams, simply supported frames, dyad (three-hinged frame), compound frames, trusses
and arches.

When a structure is subjected to an external loading, it responds by developing
internal forces which lead to internal stresses. The stresses generate strains, resulting in
displacements. To design a structural or mechanical member it is necessary to know the
forces acting within the member in order to be sure the material can resist the loading.
Internal forces can be determined by using the method of sections [4].

2.1. Internal forces components [1], [3], [4]

The internal forces in a section of a body are those forces which hold together two parts
of a given body separated by the section (Fig.2.1.1.). Both parts of the body remain
in equilibrium. It follows that internal forces which exist at a section are equivalent to all
external forces acting on the particular part of the body.

a)

Fig. 2.1.1.

All internal forces in the section can be replaced by a force-couple system R and MC,
in the centroid C of the section a (Fig. 2.1.2.). The resultant vector R consists of the axial

12



force N (its line of action is perpendicular to the plane a) and shearing force Vin the plane
a (17 has two components 17;, and I_/;). Itccordingly, MC consists of two components, the first
of which is referred to as the torque M, (its line of action is perpendicular to the plane a)
and the second is called the bending moment M in the plane o (bending moment M also
has two components My and 1\72 - Fig. 2.1.3.).

Fig. 2.1.3.

Fig. 2.1.3. shows six internal forces components in three dimensional coordinate
system xyz, where:

N - normal (axial) force,
Vy - shear (transversal) force in y direction,
Vz - shear (transversal) force in z direction,

Mx - torque (twisting moment about x axis),
My - bending moment about y axis,
M: - bending moment about z axis.

For three dimensional force systems we can write six equations of equilibrium
for the left (or right) part of the body. Solving them we can determine six internal forces
components.

13



2.2. Internal forces in statically determinate planar bar structures [2], [4]

Fig. 2.2.1. presents the simply supported beam under planar load. The support reactions
can be calculated using three equations of equilibrium.

a) T

I}, A Lo\ (B B X
! v ~ !
”’;;;;’ /P/ 17777777
y
b)
o
H\H 1y
R A M/ NPYIMNIIVIINIIVYY Py B X
\ ATV T Ty yryvyeril
P
p .
y RAy ! RBy
c)
(11111 T
R q My Mo
et DR D P B
—— Na Na —
l m ) m |
Va Va k '
1RAy 1R

Fig. 2.2.1.

If we cut the body of the beam (Fig. 2.2.1.b. and Fig. 2.2.1.c.) in the section a we will
have three internal forces: normal (axial) force No, shear (transversal) force V« and
bending moment M« in the section a. The normal force is said to be positive if it creates
tension, a positive shear force will cause the beam segment on which it acts to rotate
clockwise, and a positive bending moment will tend to bend the segment on which it acts
in a concave upward manner. The internal forces positive positions are shown
in Fig. 2.2.1.c.

Actually, if we know the support reactions and loads we just need to compose
the three equilibrium equations for the left (or right) part of the beam and we will be able
to find the magnitudes of the internal forces. Hence, we have to reduce external loading
to the beam axis x (Fig. 2.2.1.b.), so there is located additional distributed moment

_ h
m = qxg
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2.2.1. Relationships between loads, shear and moment.
Differential equations of equilibrium [2], [4]

Consider the beam shown in Fig. 2.2.1.1.a. and the differential element (Fig. 2.2.1.1.b.).
We use the same sign convention for Vo, N« and Mq as defined in Chapter 2.2. We take
the positive sense of the distributed loading to be “downward” since these loadings
are generally associated with gravity.

9y
1
[ P,
o4 o v
WRAy : } Rﬁy
y p X s
b)
Oﬁl 102
Jetil T SRENRY
Va
Mo Moa+diM,
R4 m \ m Mo+dMy wtdMa m
4 M ‘Ixﬁﬁﬁ;;q a3 vl P _ B
D) y CwEEE Nrrrrs :
‘ Na NorM /q No+dNa Not+dNa » |
@ ikl ¥ [
. Vo | VotdVa VotdVa
R 23 : :0(2 ”By
Ay dx

Fig. 2.2.1.1. a) Beam with arbitrary distributed loading, b) Differential beam element [4].
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|
dx dx i
& G & %2
|

Fig. 2.2.1.2. Differential beam element.

Considering Vo, Na and Mq to be functions of x, expanding these variables in terms of their
differentials, and retaining up to first order terms we have the forces shown in Fig. 2.2.1.2.a.
One can write three equations of equilibrium for differential beam elements:

Y Fyy = 0; —Vy + qydx + (V, + dV,) = 0 (2.1)
YFE,=0; —N, + qydx + (N, +dN,) =0 (2.2)
Y M, = 0; —Mg — Vodx — mdx + qydx =+ (M +dMg) =0 (2.3)

15



Hence, we have:

dVey _

E = qy (24)

dNg _

— = U« (2.5)
2 =Vt m (2.6)

In common used bar elements qgx=0 i m=0 (Fig.2.2.1.2.b.), so in this case
the differential equations of equilibrium will have the form:
dT,

— =~y (2.7)
dM,
v V, (2.8)
d’M, _ dVy
dxz  dx —qy (2.9)

As we can see above, there are connections between the distributed loads, shear and
moment functions.

The first equation states that the slope of the shear diagram at a point is equal
to the intensity of the distributed load at the point. Likewise, the second equation states
that the slope of the moment diagram is equal to the shear at the point.

These two relations are very useful for checking the consistency of the shear
and moment diagrams. One can reason about the shape of these diagrams using only
information about the loading on a segment of the beam. For example, if shear is constant,
moment varies linearly; and if shear varies linearly, moment varies quadratically.

The integral forms can be useful if we want to either compute values at discrete points
or determine analytical solutions.

Another useful property that can be established from integral forms relates to the
maximum values of the moment. We know from calculus that extreme values
of a continuous function are located at points where the first derivative is zero. Applying
this theorem to the moment function, M(x), the location x, of an extreme value (either
maximum or minimum) of moment can be found by solving equation:

dMy,
ke 7, =0 (2.10)

As we see, the extreme values of moment occur at points where the shear force is zero.
We can do the shear diagrams from the applied loading and find the points of zero shear.
If we are interested only in peak values of moment, we can calculate its value from the
equilibrium conditions.

2.3. Internal forces diagrams - beams [1], [4]

2.3.1. Simple beams

Beams are used extensively in structures (for example in flooring systems of buildings or in
bridges). Their longitudinal dimension is large in comparison to their cross-sectional
dimensions so they belong to the line (bar) element category. Beams are loaded primarily
normal to the longitudinal direction, and carry the loading by bending action. The first step
in the analysis of a statically determinate beam is the determination of the reactions. Given
the reactions, one can establish the internal forces using equilibrium-based procedures.

16



e concentrated P force loading:

a) cantilever beam (Fig. 2.3.1.)

||\H||\\HHHHHPM@
Plsina
M’H @

HEEEEEEEEEECcEEEEE
LTy

Pcosa,

Fig. 2.3.1.

Assume that the beam is cut at point C a distance of x from the left free end
and the portion of the beam to the right of C be removed (Fig. 2.3.2.). The portion removed
must then be replaced by vertical shearing force V(x) and horizontal normal force N(x)
together with a couple M(x) to hold the left portion of the bar in equilibrium under the
action of force P. In this case, it is not necessary to determine the support reactions
because the left side of the beam is free of supports.

Considering V, N and M are functions of x one can write the three equations
of equilibrium for the left part of the beam and find the values of the internal forces.

Ve 2
& M(x)
i N(x)
Ty Vix)
Fig. 2.3.2
SegmentA-B: 0<x<I
YXFy=0; V(x) + Psina =0 - V(x) = —Psina
YFE, =0; N(x) + Pcosa =0 - N(x) = —Pcosa
XMy =0; M(x)+ Psina-x=0 - M(x) = —Pxsina
for x=0 M(x)=0 and for x=1 M(x) = —Plsina

17



Internal forces diagrams are presented in Fig. 2.3.1.

b) simply supported beam (Fig. 2.3.3.)

Fig. 2.3.3.

Support reactions are presented in Fig. 2.3.3.

Considering V, N and M are functions of x one has to do the “cut” twice (A-D
and B-D segment) and write the three equations of equilibrium for every beam section
(separate left or right part) and then calculate the values of the internal forces (Fig. 2.3.4.).

SR, S oW
' T Mx,) 1 |
A ! - M(X) i B
o ‘l Ne  Nex) T &
P V(X) V(Xf) TB
2 2
Fig. 2.3.4.
SegmentA-D: 0<x< é
X Fy =0; V(x)—§=0 - V(x):g
ZFix:O; N(x)=0
XMy =0; M(x)—g-x=0 - M(x)=§x
for x=0 M(x)=0 and for x=é M(x)=%l

18



SegmentB-D: 0<x; < é

P P
LFy =0; —V(xy) 5= 0 - V(x)) = -3
ZFixz(); N(xl)zo

P P
LM,y =0 M) +5 1 =0 - M) =5x

for x; =0 M(x,) =0 and for xlzé M(xl)z%l

Internal forces diagrams are shown in Fig. 2.3.3.

The normal force is zero because there isn’t any horizontal load.

e concentrated M moment loading:
a) cantilever beam (Fig. 2.3.5.)

[tis not necessary to determine the support reactions because the left side of the beam
is free of supports. We can cut and separate the left-hand part of the member to determine
the internal forces (Fig. 2.3.6.).

Considering that V, N and M are functions of x, one can write the three equations
for the left part of the beam and find the values of the internal forces.

M\I\IIIHIéIIIIIIIIIM@
& ™

Fig. 2.3.5.

M(x)

Fig. 2.3.6
SegmentA-B: 0<x<!
YXFy=0; Vix) =0
YFix=0; N(x)=0
XMy =0; Mx)+M=0 - M(x)=—-M

Internal forces diagrams are shown in Fig. 2.3.5.
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b) simply supported beam (Fig. 2.3.7.)
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Fig. 2.3.7.

Support reactions are presented in Fig. 2.3.7.
Considering V, N and M are functions of x one has to do the “cut” twice (A-D

and B-D) and write the three equations of equilibrium for every beam section (separate
left or right part) and then calculate the values of the internal forces (Fig. 2.3.8.).

— DU
| Tl Mix) M(x) ) * :
%] l V) Vi) |
Fig. 2.3.8.
SegmentA-D: 0<x< é

X Fy =0; v -Y=0 - v@=Y

Y F,=0; N(x)=0

XMy =0; M(x)—%x:O - M(x)zgx

for x=0 M(x)=0 and for xzé M(x) =—
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SegmentB-D: 0<x; < é

Y Fy=0; —V(xy) +¥ =0 S V() = %
M M
2 My =0 “ME) T =0 - M) =-tx
M

for x; =0 M(x) =0 and for x =é M(x,) = -
Internal forces diagrams are shown in Fig. 2.3.7.

e uniformly distributed loading q:

a) cantilever beam (Fig. 2.3.9.)

X2
| 1 1,72
| 29 Y
LY VVYVYVVYIYY ) p———=
Ay B |
qx I
L tql * )

Fig. 2.3.9.

Assume that the beam is cut at point C a distance of x from the left free end and
the portion of the beam to the right of C be removed (Fig. 2.3.10.). The portion removed
must then be replaced by vertical shearing force V(x) and horizontal normal force N(x)
together with a couple M(x) to hold the left portion of the bar in equilibrium under
uniformly distributed loading g. In this case, it is not necessary to determine the support
reactions because the left side of the beam is free of supports.

Considering V, N and M are functions of x one can write the three equations for the left
part of the beam and find the values of the internal forces.

; -
| x/2 |
EE—
1 Mix)
.—I" Y Y YYYY VY VY >
(l N(x)
\
qx
Vix)
Fig. 2.3.10.
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SegmentA-B: 0<x<!

YXFy=0; Vix)+gx=0 - V(x) =—qx
for x=0 Vx)=0 x=1 V(x)=—ql
2 Fix =0; Nx)=0

2
XMy =0; M(x)+qx-§=0 - M(x)=—%

for x=0 M(x)=0; xzé

If the uniformly distributed load loads the cantilever beam the internal moment
diagram is a parabolic function. Three values are needed for plotting the diagram.
The first one can be the free end of the beam, the second one is at the middle of the beam
and the last one is at the support.

The shear force diagram is linear and it is sufficient to determine its value at two
points - at the free end and at the supported end of the beam.

Internal forces diagrams are shown in Fig. 2.3.9.

b) simply supported beam (Fig. 2.3.11.)

Support reactions are presented in Fig. 2.3.11.

fr—— Lm q

- ™
. Mix)
_1\ YyvyYyv A
c ;
VL Y l Nx)
q\

_cﬂ Vix)
2

Fig. 2.3.12.
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Internal forces equations (Fig. 2.3.12.) have the form:

SegmentA-B: 0<x<I

YF,=0 —q?l+qx+V(x)=0 - V(x)=q?l—qx

for x =0 V(x):q?l; x=1 V(x):-q?l

Vx)=0 - q?l—qx=0 - x=é

ZFix:O; N(x)=0

2
LM =0; M(x)+qx-§—q;lx=0 S M) =Ly -1

for x=0 Mx)=0; x=1 M) =0; xzé M(x)=q—l-£—M=ﬂ

Internal forces diagrams are shown in Fig. 2.3.11.

triangular distributed loading:

a) cantilever beam (Fig. 2.3.13.)

Fig. 2.3.14.
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Internal forces equations (Fig. 2.3.14.) have the form:

SegmentA-B: 0<x<I

Y Fy =0; VO +1q00x=0 - V@) =-1q
We have
l X q l
thus,
1 1gx 1 gx?
V(x) = _EQ(x)x = _ETx = _ET
for x =10 V(x) =0; X Zé V(x) = —%ql; x=1 V(x)
Y Fix = 0; N(x) =0
ZM(C):OZ M(x)+%q(x)x-§:() N M(x)z—%

2
for x=0 M(x)=0; x=—M(x)=—£; x=1 M) =
Internal forces diagrams are shown in Fig. 2.3.13.

b) simply supported beam (Fig. 2.3.15.)

Support reactions are presented in Fig. 2.3.15.

I q

= A

- — —

4 I }
gl - g ")
6! Yy ‘ 3
! |
/ _ 2
%_ () | |
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A | Y
AN c
L ) J l N(x)
V
%—4 2x/3 | @
I
Fig. 2.3.16.

Internal forces equations (Fig. 2.3.16.) have the form:

SegmentA-B: 0<x<I

11 o1
Y Fy=0; —%+Eq(x)x+V(x)=0 - V(x):%—zq(x)x
g:—q(x) - (x): E
1~ x 1 1
thus

_ql 1 _ql 1gqx ql 1gqx?
e A N A

for x=0 V(x) = %l;

! _ 1.
X = V(x) = ” ql;
x=1 V(x)=—§ql;

V(X)ZO e q_l___=0 > x ==

2 Fix =0; Nx)=0
3

I 1 L1 l
XMy =0; M(x)—%x+zq(x)x-§=0 - M(x) =%x—5%x-§=%x—%

for x=0 M(x)=0;
x=1 M(x)=0;
V3l _ V3ql?

=5 M(x) = 27

Internal forces diagrams are shown in Fig. 2.3.15.

25



¢ uniformly distributed moment m:

a) cantilever beam (Fig. 2.3.17.)

Fig. 2.3.18.

Internal forces equations (Fig. 2.3.18.) have the form:

SegmentA-B: 0<x<I

ZFiyZO; V(x)=0
LFix=0; N(x)=0
XM =0; M(x)—mx=0 - M(x) = mx = qlx

for x=0 Mx) =0; x=1 Mk)=ql?

Internal forces diagrams are shown in Fig. 2.3.17.
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b) simply supported beam (Fig. 2.3.19.)

Support reactions are presented in Fig. 2.3.19.

X
mx
m=ql

ql gl ‘y
f |
= ®
-ql -ql
! o )
! s ! ™)
Fig. 2.3.19.
1 & Ny
| o
m=ql /_{7‘7)( M,
oo Swewiiid
j i NG
gl Vix)
Fig. 2.3.20.

Internal forces equations (Fig. 2.3.20.) have the form:

SegmentA-B: 0<x<!

X Fy =0; —ql=V(x)=0 - V(x) =—ql
YFE,=0; N(x)=0
XM =0; M(x) —mx+qlx =0 > M) =qlx—qlx=0

Internal forces diagrams are shown in Fig. 2.3.19.
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The internal forces analysis in the beams presented above show that:

normal (axial) force N, in a section is an algebraic sum of all forces longitudinal
components located on the left (or right) side of the section,

shear (transversal) force V, in a section is an algebraic sum of all force
components normal to the longitudinal direction and located on the left (or right)
side of the section,

bending moment M, in a section is an algebraic sum of all moments caused
by forces located on the left (or right) side of the section calculated about
the centroid of the section.

Internal forces - sign convention (Fig. 2.3.21.):

normal (axial) force N, - tensile force is positive, compressive force — negative,
shear (transversal) force V, - is positive when the algebraic sum of all force
components normal to the longitudinal direction and located on the left side
of the section is upward (or when the algebraic sum of all force components normal
to the longitudinal direction and located on the right side of the section is downward),
bending moment M, - is positive if the lower fibers are bended.

L R
_______________ T
I ® lVN a NaVaT @

A Mo M, M
—— yp
® iVa VaT @®
M, M,
SL— - S R ——— L
® lV:V NaVaT )

Fig. 2.3.21.

Internal forces diagrams - important points:
We may always determine the internal forces at each characteristic point of the beam.

In addition, if we know some rules we can facilitate the composition of the internal
forces diagrams.

Some of these rules are as follow:

28

at force load point, the internal moment diagram has a kink and the shear force
diagram has a jump,

at concentrated moment load point the internal moment diagram has a jump,

if some segment of the beam hasn’t any load then the internal moment diagram
is linear and the shear force diagram is constant,

if some segment of the beam is under uniformly distributed load then the internal
moment diagram is parabolic of second degree and shear force diagram is linear,



e if some segment of the beam is under triangular distributed loading then
the internal moment diagram is third degree curve and the shear force diagram
is parabolic of second degree,

e the extreme values of moment occur at points where the shear force function
is equal zero. We can do the shear diagrams from the applied loading and find
the points of zero shear. If we are interested only in peak values of moment, we can
calculate its value from the equilibrium conditions,

e the moment diagram should be plotted at the bended side of the member.

2.3.2. Computational problems - simple beams

Computational example 2.3.1.

For the beam presented in Fig. 2.3.22.a. draw internal forces diagrams.

a)

3qP°
i
AL c
iy s T
3ql
. 21 ; [
b)
ﬁpl—k
2ql 3ql°
R q
dx A B C
—
oy = T
TRA\ RB jq[
Fig. 2.3.22
1. Degree of static indeterminacy n =0
2. Supportreactions (Fig. 2.3.22.b.):
ZFiyZO; RAy+ RB_qu+3ql:O
2Fx=0; Ry =0
X My = 0; Rp-2l+3ql>—2ql-1+3ql-31=0
hence:

RB = _Sql RAy = 4ql
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3. Internal forces equations (Fig. 2.3.23):

!
oy I A I
bV, T 3ql!
| I I
! I I
[y
- (v) [dl]
| S
| 3 3
I I 2
N M) [qF]
@ 2
3
20
6
Fig. 2.3.23.
SegmentA-B 0 <x; <2l
V(xl) = 4‘ql - qxl
V(x; = 0) = 4ql V(x, = 21) = 2ql
X (x1)?
M(x;) = 4ql - x, —qxl'?lz‘lql-xl —q- ;
M(x1:O):0 M(_x1:2[):4ql.21_q.%:6qlz

N(x;) =0

Segment C-B 0<x, <1
V(x,) = —3ql
M(x,) = 3ql - x, + 3ql?
M(x, = 0) = 3ql? M(x, = 1) = 6ql?

Internal forces diagrams (V, M) are shown in Fig. 2.3.23. Diagram N(x) = 0.
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Computational example 2.3.2.
Draw internal forces diagrams for the beam shown in Fig. 2.3.24.a.

a)

29 3 6ql°
A/rnﬂ/me c;lallllllllllllllllll% 9
2qu ” T4‘ﬂ
; 31 o B o 41 w O
b)
3ql 4q1
A C
241 T 2 ¥ Roc 4
Fig. 2.3.24.

1. Degree of static indeterminacy n = 0
2. Support reactions (Fig. 2.3.24.b.):
Since there are no horizontal loads acting on the beam, thus Ry, = 0

Y My =0; —2ql-4l+3ql-2l—4ql-2l+ Rpy,-4l+4ql-6l+6ql* =0
Rpy, = —5ql
LFy =0; Rc + Rpy +2ql —3ql —4ql +4ql =0 Ry = 6ql
3. Internal forces equations (Fig. 2.3.25.):
Segment A-B 0<x, <3l

q(x) _2q () = 204
x, 3l )= 73

1 1 2qx qx,?
V() =2ql = 5q0a) - xy = 2ql =5 -0 = 291 =

Vix,=0)=2ql V (x1 = Zl) = qu V(x; =31 =—ql

V(x;) =0 equ—%-%-x1=0 - 6ql2—qx;2=0 - x, =6l
1 X 1 2qx X (x)3
M(x1):quxl_EQ(xﬂ'xf?l:quxl_z'Tl'xl'?lzquxl_cr 911
M(x;=0)=0 M(x, = 31) = 3ql?
NG
M(x1=\/81)=2ql-\/€l—q-( 91) = zV6q!?

N(x;) =0
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Segment B-C 0<x, <1
V(x;) = 2ql —3ql = —ql
M(x,) =2ql- (3l +x,) —3ql- (1 + x3)
M(x, = 0) = 3ql? M(x,=1)=2ql-(Bl+1)—3ql-(l+1) =2ql?
N(x,) =0

e | ]
IM&? Iq I 6ql*
4 5 [T o 5
1 -*x im 2 "'3”%;_0
2q1 L T q#ﬁ “al
641 5q/
| | o | |
| g | | i
o, : i
- @ rdl]
Ea ¢
| 4

SegmentD-C 0 < x3 <4l
V(x3) = —4ql + 5ql + qx;
V(xs=0)=ql V(x3=4Il)=>5ql
X
M(x3) = 6ql? + 4ql - (21 + x3) — 5ql - x5 — qx3 ?3
M(x3 = 0) = 14ql? M(x; = 4l) = 2ql?
N(x3) S O

SegmentE-D 0<x, <2l
V(x,) = —4ql
M(x,) = 6ql? + 4ql - x,
M(x, =0) =6ql> M(x, =2l) = 14ql?
N(x,) =0
Internal forces diagrams (V and M) are presented in Fig. 2.3.25. Diagram N(x) = 0.
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2.3.3. Compound beams

a)

4 _B L D E F
Via Voiza

b)
E B C I E F
© 7~ © N
Vo AT
D E F
AN L
B & D
oy s
Fig. 2.3.26.

The compound beam is composed of more than one simple beam (Fig.2.3.26.).
The compound beam presented in Fig. 2.3.26.a. is composed of one cantilever beam
and two simple beams, all of them lying on one line. Beam BC is based both on beam AB
and beam CF. Beam AB is fixed and beam CF is supported on the ground (terra) so these
beams we call primary beams. The middle beam is called the secondary beam. The beam
shown in Fig. 2.3.26.b. is also composed of one cantilever beam and two simple beams.
Beam DF is based on beam BD and on the roller support E. Beam BD is based on beam AB
and the roller support C. Beam AB is fixed so we call this beam the primary beam
and the two other we call secondary beams.

As we can see in Fig. 2.3.26. the secondary beams transfer the loads to the basics ones.
That is why we first analyze the secondary beams and then their support reactions load
on the basic beam. We can write internal forces equations or calculate internal forces
directly at points separately for every beam. We also draw separately the internal forces
diagrams and after that, we join them for the whole compound beam.
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2.3.4. Computational problems - compound beams

Computational example 2.3.3.
For the compound beam shown in Fig. 2.3.27.a. draw internal forces diagrams.

a)

3qF°
q
g
ZQIT T.?ql
I 4 21 P
b)
[
2ql 3q
q
RC\ G D ’/]57
iy L T
T T 3ql
M. Rey Ro
R{x 2:1 B C RCY
2 ]t qu
R—I}'T q

Fig. 2.3.27.

1. Degree of static indeterminacyn =r +2s -3t =4+2-3-2=0
2. Support reactions (Fig. 2.3.27.b.):

Since there are no horizontal loads acting on the beam, thus Ry, = R, =0
- right beam:

YMpy=0; —Rey-2l+2ql-1+3ql>+3ql-1=0 Rg, =4ql

LFy=0; Rey — 2ql+Rp +3ql = 0 Rp = —5ql
- left beam:

Y My =0; —My+2ql-1-Rg,-2l=0 M, =—6ql?

LFEy=0; Ryy +2ql—R¢y =0 Ruy = 24!

3. Internal forces equations (Fig. 2.3.28.):

SegmentA-B 0<x; <l
V(x,) = 2ql
M(x;) = —6ql* + 2ql-x,
M(x; = 0) = —6ql? M(x; = 1) = —4ql?
N(x) =0
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Segment C-B 0<x,
V(x,) = 4ql
M(x,) = —4ql - x,
M(x,=0)=0
N(x,) =0

<l

M(x, = 1) = —4ql?

|x1‘ ‘le
6gl° '
C%A B G
quT l41
ZQZT T |
l | | | |
| 4 4 | |
it .
| | | S ‘
| | | 3 3
| | |
6 | |
{ |
|

SegmentC-D 0 < x3
V(x3) = 4ql — qx;
V(x; =0) =4ql

M(x3) = 4ql-x3 — qx3 -

Mx;=0)=0 M
N(x3) =0

(x3=01= %qlz

| - M) [aF]
3
20
6
Fig. 2.3.28.
<2l
V(x3 =21) = 2ql
x (x3)?
- =4ql x5 =g

M(x; = 21) = 6ql?
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SegmentE-D 0<x, <1
V(x,) = —3ql
M(x,) = 3ql* + 3ql-x,
M(x, = 0) = 3ql? M(x, =1) = 6ql?
N(x,) =0

Internal forces diagrams (V, M) are shown in Fig. 2.3.28. Diagram N(x) = 0.

Computational example 2.3.4.

For the compound beam shown in Fig. 2.3.29. draw internal forces diagrams.

1. Degree of static indeterminacyn =r+2s -3t =4+2-3-2=0
2. Supportreactions (Fig. 2.3.29.):
Since there are no horizontal loads acting on the beam, thus R, = R4, = 0

2q q
2/1 5l | T T T CIrrrairn
had AN
Vi
I, 31 oo
[ |2q]
Y q

391 2 TRD

M. K
R_C% ¥ Mrﬁ
r.f *

Fig. 2.3.29.

- right beam:
ZFiy:O; RD_qu+RCy:O Rcy:ql
This beam is symmetrical and symmetrically loaded so it wasn’t necessary to calculate

the reactions by the equations of equilibrium. It is obvious that the reactions should be
equal:

Rey =Rp = ql,
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- left beam:

XMy =0, —M,—3ql- 2l-R¢y,-4l=0 M, =-10 ql?
YXFy =0, —Rcy—3ql+Ry, =0 R4y = 4ql
3. Internal forces equations (Fig. 2.3.30.):
.
c D

Fig. 2.3.30.

Segment A-B 0<x, <l
V(x;) =4ql
M(x;) = —10ql* + 4ql - x,
M(x; =0) = —10ql2  M(x; = 1) = —6ql?
N(x;) =0

Segment C-B 0<x,<3l

q(x2) _ 29 N (x)Zquz
P TH T
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2gx x,°
qx; ql+q2

1 1
V(xz)qu+EQ(x2)'x2 ql E

* 31 31
V(x, =0) =ql V(x2 =—l) =—ql V(x, =3l) =4ql
M(x,) = —ql-xz—%q(xz)-xz-?=—ql'x2—% -%-xz-%=
= gl oy — _(x2)3

N(xz) S O

SegmentC-D 0 <x3 <2l
V(x3) = ql — qx3
V(x3 =0) =ql V(x; =20) =—ql
V(ix3) =0 - ql—qx3=0 - x3=1

X3 (x3)2
M(xg)=ql-x3—qx3-7=ql-x3—q- >

M(x;=0)=0 M(x;=20)=0 M(x3=l)=ql-l—q-g=%ql2
N(x3) =0

Internal forces diagrams (V and M) are presented in Fig. 2.3.30. Diagram N(x) = 0.

Computational example 2.3.5.
For the compound beam shown in Fig. 2.3.31.a. draw internal forces diagrams.

Degree of static indeterminacyn =r+2s—-3t=4+2-3-2=0

1. Support reactions (Fig. 2.3.31.b.):
Since there are no horizontal loads acting on the beam, thus Ry, = Rz, = 0
- left beam:

Y My =0; —2ql-l4+Rg,-2l=0 Ry, =ql
ZFiyz(); RAy—ZCIl-l—RBy:O RAyqu
This beam is symmetrical and symmetrically loaded so we didn’t have to calculate the
reactions by the equations of equilibrium. It is obvious that the reactions should be equal:
RAy = RBy =ql
- right beam:
Y Mc)=0; Rpy-20+2ql-l+Rp-2l+ql*=0 Rp=—_ql

Y Fy = 0; ~Rpy+Rc + 2ql+R; = 0 Re =2q
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2.

) S B B

b)
[ |2ql
P A q
RL-M RB.\'
T RA’_]' T RB]‘ q[
RB,\' B D rd

C
AN
Ve

RB"’i R(WT Tqu

Fig. 2.3.31.

Internal forces equations (Fig. 2.3.32.):

SegmentA-B 0<x; <2l

V(x1) = ql — qx,
V(x, =0)=ql V(x, =20) =—ql
Vix,)) =0 - ql—qx;=0 - x;=1

x (x1)?
M(x) =ql x —qx; > =ql x, — q —

2 2
—0) = _ _ N ® _1 5

N(x) =0

Segment B-C 0<x,<2l

V(xz) = —ql

M(xz) = —ql-x,

M(x,=0)=0  M(x, =2I) = —2ql?
N(xy;) =0

SegmentC-D 0<x;3<

V(x3) = l+3l—1l
X3) = —qt T4t =54

3
M(x3) = —ql- (21 + x3) +qu-x3
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M(x; = 0) = —2ql?
N(x3) =0

M(x; = 1) = —>ql2

SegmentE-D 0<x, <

5
V(xy) = qu

5
M(xy) = ql* — 54l x4

M(x, =0) = ql?
N(x,) =0

M(x,=1)= —gqlz

Segment F-E 0<x5<1
V(xs) S 0
M(xs) = ql?

N(xs) =0

Internal forces diagrams (V, M) are shown in Fig. 2.3.32. Diagram N(x) = 0.

| x]
! q
Aysyv v v v v v {B
pas #qxf
ql 7 Tq/ - x|
e g’
B C D E F
J, 21 2
3l o
| | | | | |
| i | 5 3 |
1 ; 1| ® |
%\“\@L]mll@u(}m | |O|@[W
: j | | I |
2 13 | |
| | [HTE
Wmﬂm 1||®||1

Fig. 2.3.32.
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Computational example 2.3.6.

Draw internal forces diagrams for the beam shown in Fig. 2.3.33.

3qF )
(] 2
54 s T AT T o
2 2
2ql o
/ ; / 5 21 / / 31
21
i 3ql
.RE.\' _;E F G
v
_*L,r_ TRE\ TRF
2ql 3qF
q
RC\' (0‘% A,[-) E - RE\'
R lREl
M =2 Ro
RA\' A B C RC‘\'
2 ] lRC\
.RA_!T C]
Fig. 2.3.33.

1. Degree of static indeterminacyn =r +2s -3t =5+4—-3-3=0
2. Support reactions (Fig. 2.3.33.):

Since there are no horizontal loads acting on the beam, thus Ry, = Rcy, = Rz, =0
- right beam:

ZM(F):O; —REy'l—Sql-l:O REy:—gql
ZFlyz()’ REy+RF_3ql=O RF=6ql
- middle beam:
XMpy=0; —Rcy-2l+2ql-1-Rg, -1+ 3ql2 =0 Rey = 4ql
ZFiy:O; RCy+RD_REy_2ql:O RD:_Sql
- left beam:
ZM(A) =0; _MA + ZCIl . l_RCy 2l=0 MA = —6 qlz
LFy=0; —R¢y +2ql+ Ry, =0 Ry, = 2ql
3. Internal forces equations (Fig. 2.3.34.):

Segment A-B
V(x,) = 2ql

M(x;) = —6ql* + 2ql - x;
M(x; = 0) = —6ql?

0<x <l

M(x, = 1) = —4ql?
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U 6ql
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] 3qF°
T e
cOiiiiiiiin E
gV x 3ql
4q/T — qu[
1 X X5
6q/2 ' |
C ?A B C
2q1 T i4 /
quT | 174 | | |
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o '
; " |
3
ol
3
20
6
Fig. 2.3.34.
Segment C-B 0<x,<I
V(xz) = 4ql
M(x,) = —4ql - x,
M(x,=0)=0 M(x, = 1) = —4ql?
SegmentC-D 0 <x3 <2l
V(x3) = 4ql — qx3
V(x3 =0) =4ql V(x3 =21) = 2ql
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X (x3)?
M(xg)=4ql-x3—qx3-73=4ql-x3—q- ;

M(x;=0)=0 M(x3 = 21) = 6ql?

SegmentE-D 0 <x, <l
V(x,) = —3ql
M(x,) = 3ql*> + 3ql-x,
M(x, = 0) = 3ql? M(x, =1) = 6ql?

Segment E-F 0<x5<1
V(xs) = —3ql
M(xs) = —3ql - xs
M(xs=0)=0 M(xs = 1) = —3ql?

Segment G-F 0<x¢<2l

q(x6) _2q L g = 2qx,
xe 3l  THT T3
1 1 2gxg _qxe’
V(xe) = ZQ(xe) Xe = Y Xe = 3
3 3
Vie=0=0 V(x=21)=3q V(=3 =3ql
X6 1 2qxs Xe (x6)*

1
M(xe) = —5q(x6) X6 - 5= —5 57X 5 = —q —g

3 3 2 3
M(xg=0)=0 M(x6— l)=—§ql M(x6=3l)=—q-7——

T2
Internal forces diagrams (V, M) are shown in Fig. 2.3.34.
There are no horizontal loads, hence N(x) = 0.

Computational example 2.3.7.
Draw internal forces diagrams for the beam shown in Fig. 2.3.35.a.

a)

2ql

g’
27
) q
SHHHHHHHHH‘BMC D EC G
a4 - S - T
41 . 3 L, 41 . 2
Fig. 2.3.35a.

1. Degree of static indeterminacyn =r +2s -3t =5+4—-3-3=0
2. Support reactions (Fig. 2.3.35.b.):

Since there are no horizontal loads acting on the beam, thus Ry, = Rz, = Rg, =0

- right beam:
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a2 o, TRE.v TRF
R p 77 ¥]1lc » E_ Rn
i ~ -
Vo lRf‘
M. 4q! 1RBJ‘ TRD
q
RA‘ + B RBA
! LRBl
%
I
Fig. 2.3.35h.

3
XMy =0; —Rgy20+2ql-2l—ql*=0 R, =>ql

X Fiy =0; Rey + Rp+2ql =0 Rp=—§ql
- middle beam:
YMpy=0; —Rg,-4l+3ql-2l1-Rg,-4l=0 Ry, =0gql

YFy=0; Rgy +Rp —Rgy —3ql =0 Rngql
- left beam:

ZM(A) =0; —My—4ql-2l-Rg,-4l=0 M, =-8 ql?

ZFiyZO; _RBy_4ql+RAy:0 RAy:4ql

3. Internal forces equations (Fig. 2.3.36.):

SegmentB-A 0<x; <4l

V(x1) = qx;
V(ix;=0)=0 V(x; = 4l = 4ql
X1 (x1)2
M — _ L .
(x1) qx, 5 q >

M(xl = 0) =0 M(xl = 2l) = —ZCIlz M(xl = 4[) — _8ql2
N(x;) =0

Segment B-C 0<x,<3l

q(xz) _2q L g = 2qx,
T
— 1 _ 1 2qx, . qxzz
Vi) = —3a00) X = =5 - = -0
3 3
V(x;=0)=0 V(xz = ;l) =—;al V(x, =3l) = —3ql
_ 1 X2 1 2qx, Xy (x;)?
M) = =50(2) x50 = =5 g X g = =4 )

3
M, =0)=0 M(x,=21)=-2q> M(x,=3)=—q-2-=-3q1
N(x3) =0
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X3 % T
. SR g ; 2q1
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@HHHHHHH 111B
A
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4ql
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| T T T OV
! z N ~ ! 2 2
|

%
[0)

A T

SegmentC-D 0<x;3<
V(x3) = —3ql
M(x3) = =3ql- (I + x3)

M(x; = 0) = —3ql?

N(x3)=0
SegmentE-D 0<x, <4l
V( )—3 l
X4 _Zq
M(xy) = —5ql- x4
M(X4=O)=0 M(X4—4‘l)=_
N(X4)=O
Segment E-F 0<x5<2l
V( )—3 l
X5 _Zq
3
M(x5)=qlz+§ql'xs
M(xs = 0) = ql? M(xs = 21) =

N(xs) =0

IW

Fig. 2.3.36.

M(x; = 1) = —6ql?

4ql?

M) [a]
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Segment G-F 0<x¢<2l
V(xg) = —2ql
M(xg) = 2ql - xg
M(xg=0)=0 M(xg = 20) = 4ql?
N(xg) =0
Internal forces diagrams (V and M) are presented in Fig. 2.3.36. Diagram N(x) = 0.

Computational example 2.3.8.

For the compound beam shown in Fig. 2.3.37. draw internal forces diagrams.

4ql¢ 64l

2q a = 30°

K
L

4qi* lsqz

R
A

/Y Ve
M, RBy ‘ TRC

B
@ W " R
24 IR
r| y

21 g

AT

Fig. 2.3.37.

1. Degree of static indeterminacyn =r +2s -3t =4+2-3-2=0
2. Support reactions (Fig. 2.3.37.):

- right beam:
Y Mpy=0; —4ql*-3ql-2l+ R;-1=0 R, =10ql
YFy=0; —Rp,+R-—3ql=0 Rp, = 7ql
YF,=0; —Rg,+3V3ql=0 R, = 3V/3ql

- left beam:
XMy =0, —My+3ql-214Rp,-4l=0 M, =34ql*
YFy=0; R4y + Rgy, +3ql =0 R4y, = —10ql
X Fix = 0; Rax + Rpx = 0 Rax = —=3V3ql
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fql

Internal forces diagrams are presented in Fig. 2.3.38.

@) [4ql]

[C5)]

[G5)

[en

o

Fig. 2.3.38.
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Computational example 2.3.9.

For the compound beam shown in Fig. 2.3.39.a. draw internal forces diagrams.

4ql?

2,
2q
q
LTI T]]C QF. FWH\HTFN\G o« - 30°
A A T A \\7@
AT Vi AT
2ql

-/ S P I 3l

M.

ey

Fig. 2.3.39.

1. Degree of static indeterminacyn =r +2s -3t =5+4—-3-3=0
2. Support reactions (Fig. 2.3.39.b.):

- right beam:
2 My = 0;
2Fy=0;
2Fix=0;
- middle beam:
X Mpy=0;
X Fy, =0;
2Fix=0;
- left beam:
X Mgy =0;
XFy,=0;
2Fix=0;

48

ql-31-3ql-1—Rg,-1=0 Ry, =0
REx_‘/§ql =0 REx :\/§ql

_Rcyl+4‘ql2+4‘qll_REyl=0 Rcy=8ql
Rcy + RD_REy + 4ql S O RD S _12ql
Rexy —Rpx =0 Rey = ‘/§ql

_MA_qul_RcyZI S O MA = _18 qlz
RB - Rcy - qu = 0 RB = 10ql
Ryx —=Rex =0 Ryx = ‘/§ql
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\gI-H-'—'—*""—'—H-'-'-H-'-'-'-'-'-'- - [ql]
Fig. 2.3.40.
Segment G-F 0<x;<3l
q(x1):2_q S q(xy) = 2qx,
X, 3l 1) = 73
B 1 B 1 2qx, B qx,?
V(xy) = ql+§q(x1) Xp = ql+§ TR ql + 3

V(x; =0) =—ql

v —3)— .,
x1—2 = 4q
V(x, =31 = 2ql
V(x;) =0 —>—ql+%-

2qxq
31

x; =0 - 3ql2—qx;2=0 - x, =+/3l
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1
M(xl)=qlx1—§q(x1)-x1-?1=qlx1—§-T-xl-?—qlxl—q ol
van)® 2

M(x1=\/§l)=ql-\/§l—q-—( 91) =3 V3ql?

N(x;) = —V/3ql

Internal forces diagrams are presented in Fig. 2.3.40.

2.3.5. Review problems - beams

Draw internal forces diagrams for the beams presented below:

Problem 1.
6qil qP  2q
E B 9 ME
=
o . B 3 )
Fig. 2.3.41.
Problem 2.
4q12
m=ql
doan ¢
R S IEEEEELLL) N
q
B 2] 4 21 4
Fig. 2.3.42.
Problem 3.
4qF°
) ] iqu
74 B C D
=" z
ST
2q
P 31 L 2] L 21 L
rd Fd P4 7
Fig. 2.3.43.
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Problem 4.

4

gl
2qf 2q
%IA L C D e T T Ll }E f; TR B
IS Z E
/ . [ . 21 » 3/ . g7 21 . 2]
Fig. 2.3.44.
Problem 5.
2q 4ql~’
A:EEEIH:[.E\HHHHLHHHHHHD £
A B A T
ST Vi
3/ p 21 4, 2/
Fig. 2.3.45.
Problem 6.
4ql¢ 4q1
1 <\« /\
%A B C D E_F__GY 9§
i
V.4 /mmn a =30
2q
/ 3/ 2/ / [ /
Fig. 2.3.46
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2.4. Internal forces diagrams - planar frames [1], [2], [4]

Frames are structures that consist of vertical, horizontal or inclined members.
The vertical members are called columns and the horizontal members are called beams.
Frames members can be connected rigidly or by pins (hinges). A planar frame
is composed of individual members all of which are located in the same plane. When
loaded in this plane, they are subjected to bending, shearing and axial action.

2.4.1. Computational problems - frames

Computational example 2.4.1.

Draw internal forces diagrams for the frame presented in Fig. 2.4.1.

2ql

s .
4ql* =
I . |
] 4qlT il
- — {

o 6ql
bl ~
A JAN )

N B R B
Fig. 2.4.1.

1. Degree of static indeterminacy n =r+2s—-3t=4+2-3:-2=0
2. The support reactions:

Compound frame presented in Fig. 2.4.1. has been decomposed in the hinge C into two
simple frames (Fig. 2.4.2.).
— the right frame - equations of equilibrium:

XMcy=0; Ry-l+2ql-1+4ql-21+6ql-1=0 R, =—16ql

Y Fy=0; Ry +4ql+Rg, =0 R¢y = 12ql
Y. F,=0; — R, —2ql+6ql=0 Ry = 4ql

- the left frame - equations of equilibrium:
X Fy =0; Rg—Rcy =0 Rg = 12ql
YMyy=0; —Mp—Rcy-l—2ql-14+4ql>=0 Mp=-10ql?
Y. Fi =0; Rexy —2ql+Rp, =0 Rp, = —2ql
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2 ~
MD 4ql

|D b/ 4 f Rev Rex C F E A
RDA | | T i
: lR(‘y R(‘yT 4(1[ -
f 2ql 6ql 4 |
~ bl ~|
B[ A L

ate /\

?
§

Fig. 2.4.2.

3. Internal forces equations:

Fig. 2.4.3. presents the reactions and loads acting on the frame.

The bottom fibres of the rod members have been marked by using dashed line.

| . 2ql
i X, 7 -——— —
r——“]r»I |‘—‘ |
‘ ‘ x6 y—f
2 |‘—‘_"|
]0(112 4(][ |
» ') e f
2q1 l4ql 4ql x|
g1

\
\
|
|
\
|
1241
12q1 12 PZ | |
— —-}I
\
|
|
|

oql
f;
B _1_ A
IquT l]tﬁql
Fig. 2.4.3.
Segment A-I 0<y; <l
V(y1) =0
M(y;) =0
N(y:) = 16ql

Segment [-F 0<y, <l
V(y,) = —6ql
M(y,) = —6ql -y,
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M(y,=0)=0 M(y2=l)=—6ql2

N(y,) = 16ql
SegmentB-H 0<y;<2l
V(y3) = qys
V(y3=0)=0 V(ys =2l) =q-2l =2ql
_ V3 (y3)?
M(ys) = qys > =4
—m — _ _ @D 2
M(y;=0)=0 M(Y3—Zl)—q'T—2ql
N(ys) = —12ql

Segment G-F 0<y, <l
V(ys) = —2ql
M(y,) =2ql-y,
M(y,=0)=0 M(y, =1) =2ql-1=2ql?
N(y,) =0

Segment E-F 0<x5<I
V(xs) = —4ql
M(xg) = 4ql - x5
M(xs=0)=0 M(xs = 1) = 4ql?
N(xs) =0

Segment C-F 0<xs<I
V(xg) = 12ql
M(xg) = 12ql - x4
M(xg=0)=0 M(xg = 1) = 12ql?
N(x¢) = 4ql

SegmentC-H 0<x,<!
V(x;) =12ql
M(x,) = 4ql* — 12ql - x,
M(x, = 0) = 4ql? M(x, = 1) = —8ql?
N(x;) = 4ql

SegmentD-H 0<xg<!

V(xg) = O
M(xg) = —10ql?
N(xg) = 2ql

Internal forces diagrams are presented in Fig. 2.4.4.

Moments verifications - equilibrium of the moments for the F and H nodes (Fig. 2.4.4.).
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12
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(=)
12 16
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Node F
2q1°

Node H

6[[!2 qulb

Fig. 2.4.4.

Computational example 2.4.2.

Draw internal forces diagrams for the frame presented in Fig. 2.4.5.

g
$EL

6ql*
C ———————————— T——T ~
| |
| | ] s
| | q o~
| |
I 1 il
rFe |
! | -
B 4] o B L
V\\'\\\T\\\\\\\\ T
Rs Ry
* 21 " 4] " / 4
Fig. 2.4.5.

1. Degree of static indeterminacy n=r+2s -3t =3+6—-3-3=0

2. The support reactions:
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One of the supports is a roller and another is a pin. Three equations of equilibrium for
the planar force system can be used to determine three support reactions (Fig. 2.4.5.).

L 11
1
Y Fy =0; R +ql+ Ry =0 Ray = — =4l
2 Fi =0; —Ry,+ql =0 Ry = ql

itadh Ly
] 7"} r
R(’y
} gl =
\
N |
N 4 <R -
F A S
fffffffff =
Ry
p 41 & 3
Fig. 2.4.6.

The compound frame presented in Fig. 2.4.5. has been divided at hinges C, G and F into
two simple frames and a tie GF (Fig. 2.4.6.). The reactions Ry, R, and N (there is only
one force N in the tie) can be calculated by taking into account either the left or right
frame.

If we take into account the right one we can use the left part to verify the results. If we
take the left one, we use the right for verification.

— the left frame:

XMy =0; —RB-2l+ql-5?l—N-21=0 N=2g
11
Y F, =0; R,—N+ql=0 R0x=gql

3. Internal forces equations
Fig. 2.4.7. presents the frame reactions and loadings.
The bottom fibres of bar members have been marked by using a dashed line.

Segment A-F 0<y; <l
V(y1) =ql
M(y) =ql-y;
M(y; =0)=0 M()’1:l):qlz

1
N(y,) = qu

Segment F-E 0<y, <2l

7

V()—llgl— l
y2) =ql——aql=—2q
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13
M(y,) = ql'(l+y2)—?ql-y2

M(y,=0)=ql*  M(y,=2I) = —Zql

SegmentB-H 0<y;<I

V()’3)=—qy3
V(y3=0)=0 V(y; =1) = —ql
_ Y3 _ (¥3)?
M(ys) = —qys- > = —q-—
=0) = -7 = (OLE
11
N()’s)—ﬁql

Segment C-G 0<y, <2l
V(y,) = ! l
Ya) = 6q
7
M(y) =—zal-ys
My, =0)=0  M(y,=2l)=-2Iql
11
Ny =154l
SegmentD-E 0<x5;<
V(xs) = —ql
M(xs) = ql - x5
M(xs=0)=0 M(xs =1) = ql?



Segment C-E

N(XS) =0

0 <x¢<4l

11

V(xe) = —qu

11
M(xg) = 6ql? — qu * Xg

M(xs = 0) = 6q1>  M(xs = 4l) = 2ql?
N( )—7 l
X6 _6q
SegmentH-G 0<x, <2l

11
V(x7)——qu

11 1
M(x7)=—qu - x; —ql -El
M(x7=0)=—%ql2 M(x7=2l)=—§ql2
N(x;) = —ql

58

Internal forces diagrams are presented in Fig. 2.4.8.
Moments verifications - equilibrium of the moments for the E node (Fig. 2.4.8.).
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Computational example 2.4.3.

Draw M, V, N diagrams for the frame presented in Fig. 2.4.9.

qmmm F ’/> .
ffffff Cif,,fifi,;,fE -
| 21

\
Dq—} ail -+

\
| 2l

\
\\A{\\\&\Y\ 7

y 3/ i 3/ r 4/ ot
Fig. 2.4.9.

1. Degree of static indeterminacyn =r +2s -3t =4+2-3-2=0
2. The support reactions:
Compound frame presented in Fig. 2.4.9. has been divided in the hinge C into two

simple frames (Fig. 2.4.10.).
6gl

ql?
! prrmmne R Be o A
H G "7T I 777777777 - E 1
Vi - Re Rey 2/
B4\ plY )
x!
Ri"’&iiw M. 7
R,-]J'T
; % . 5 ) 41 ik,
Fig. 2.4.10.
- the left frame - equations of equilibrium:
XMy =0; —Rg-6l+6ql-3l=0 R = 3ql
ZFiy = O, RB - 6ql + Rcy =0 Rcy = 3ql
2 Fi =0; R, =0
- the right frame - equations of equilibrium:
ZFiy = O, RAy - Rcy =0 RAy = 3ql
XMy =0; —My+Rcy 4l4Rcy-4l+2ql-2l+ql>=0 M, =17ql?
ZFix = 0, _ch - qu + RAX =0 RAX S qu

3. Internal forces equations
Fig. 2.4.11. presents the frame reactions and loadings.

SegmentA-D 0<y; <2l
V(y1) = —2ql
M(y,) = 17ql* — 2ql -y,
M(y, =0) = 17ql? M(y, = 21) = 13ql?
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3/ 3l 41 [

4 A A A # A

Fig. 2.4.11.

SegmentD-F 0=y, <2l
V(y,) =—2ql+2ql=0
M(y,) = 17ql? — 2ql- (2L +y,) + 2ql - y, = 13ql?
N(y;) = =3ql

Segment E-F 0<x;3<I

V(x3) =0
M(x3) = ql?
N(x3) =0

Segment C-F 0<x4<4l
V(x,) = —3ql
M(x,) = —3ql-x,
M(x,=0)=0 M(x, = 41) = —12ql?
N(x,) =0

Segment C-G 0<x5<3l
V(xs) = —=3ql + gxs
V(x5 =0) =—3ql Vixs =30 =0

x (x5)?
M(xs) =3ql x5 — qus = = 3ql x5 —q =
M(xs =0) =0 M(xs = 31) =2 ql2
N(xs) =0

60



Segment H-G 0 < x4 < 31

V(xe) = —qxe
V(ixg=0)=0 V(xe = 31) = —3ql

_ X6 _ (x6)?
M(xe) = —qxe - = —q-—
M(xg=0)=0 M(xg = 30) = —ngz
N(x¢) =0

SegmentB-G 0<x,<3l, 0<y,<2l

The system of forces in segment B-G is presented in Fig. 2.4.12.

- M(xy),< Nix-y)
¥, -
Vixy)

B | .
3qlsina(( X7
13 3qlcosa
3ql
Fig. 2.4.12.
3 313 _ 2 2413
cose =—=——, sing = — = ——
Vi3 13 Vi3 13
3 V13
V(x-, = 3qglcosa = 3ql - — =9 ——ql
(x7,¥7) q q i3 13 4

M(x7,y7) = 3ql - x;
M(x; =0,y,=0)=0 M(x, = 31,y, = 21) = 9ql?

2 v13
N (x-, = —3¢glsina = -3l - — = —6——ql
(x7,y7) q q NeR 13 1

Internal forces diagrams are presented in Fig. 2.4.13.

Moments verifications - equilibrium of the moments for the F and G nodes (Fig. 2.4.13.).
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Fig. 2.4.13.

Computational example 2.4.4.

Draw M, V, N diagrams for the frame presented in Fig. 2.4.14.

4ql?

N e

41

3
* %J;Lu;u; PN

~

-*
-+

Fig. 2.4.14.

1. Degree of static indeterminacyn =r +2s -3t =4+2-3-2=0
2. The support reactions:

The compound frame presented in Fig. 2.4.14. has been divided at hinge C into two
simple frames (Fig. 2.4.15.).
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Fig. 2.4.15.
— the right frame:
ZM(C)=0; Ry-4l—4ql-21=0 Ry = 2ql
ZFiy = O, RA - Rcy =0 Rcy = qu
YFE, =0; —3ql—4ql+ R, =0 Ry = 7ql
- the left frame:
ZFiy = O, RBy - qu + Rcy =0 RBy =0
ZM(B) =0; —Mp+R¢y, - [—4ql? + Rgy -4l +2ql-1—4ql-2l=0 M, =20 ql?
YFE,=0; —Rey +4ql+ R, =0 Rp, = 3ql

Fig. 2.4.16. presents the frame reactions and loadings.

3. Internal forces equations

Segment C-E 0<x;3<I
V(x3) = —2ql
M(x3) = 2ql - x5 — 4ql?
M(x3 = 0) = —4ql? M(x; = 1) = —2ql?
N(x3) = —7ql

Segment F-E 0<x,<1
V(x,) = —2ql
M(x,) = —2ql - x,
M(x,=0)=0 M(x, = 1) = —2ql?
N(x,) =0



SegmentB-E 0<y; <4l
V(ys) = —3ql — qys
V(ys = 0) = —3ql V(ys = 4l) = =7ql
(}’5)2

M(ys) = —20ql* 4+ 3ql - ys + qys % =—20ql*+3ql-ys+q-
M(ys = 0) = —20q!?

M(ys =40) =0
N(ys) =0

| X x

S I

qul 5 4ql

T F L € 47Tq1
g j quT
Ly
™
-
3 ™

O
I
)
:

I )

I Tj
3ql
OT 20g1°
/ /

A
+

N
~

Fig. 2.4.16.

SegmentA-D 0<x; <3, 0=y, <4l
The system of forces in segment A-D is presented in Fig. 2.4.17.

N(x1y) §M(x1,y1) g  qysina
E 1

- @,

qy, cosa.

J/2qlsina

Fig. 2.4.17.
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cosa = —, sina =

3
5 5
] 3 4
V(xy,v1) = —2qlcosa + qy,sina = —2ql§ + qy, <
3 4 3 3 9
Viuy) =0 - -2qlctayc=0 - y1=51 > x =7y =gl
6
V(ix; =0, y; =0) = —z ql
V(x; =3l y;=4l)=2ql
_ Y1 _ (y)?
MG y) = 2ql-20 = qyr -5 =29l 0 —q - =
M(x1=0, y1=0)=0
M(x; =31, y, =4l) = —2ql?
M( —9l —3l>—9 12
4 3
N(x1,y1) = —2qlsina — qy,cosa = —2ql T qy1 T
8
N(x; =0, y;=0) = —z ql
N(x, =31, y; =4l = —4ql
SegmentC-D 0<x, <!
V(x,) = —2ql
M(x,) = —2ql-x,
M(x,=0)=0 M(x, = 1) = —2ql?
N(x;) = —7ql
7 7 7
| n 4
o
- ™) 141/ 3

Fig. 2.4.18a.



Fig. 2.4.18b.

Internal forces diagrams are presented in Fig. 2.4.18.
Verification of the results - equilibrium of the moments for the E node (Fig. 2.4.18.).

Computational example 2.4.5.
Draw M, V, N diagrams for the frame presented in Fig. 2.4.19.a.

1. Degree of static indeterminacyn =r+2s—3t=3+6—-3-3=0
2. The support reactions:
Equilibrium equations for the frame (Fig. 2.4.19.b.):

YFE,=0; Rg, +2ql—3ql=0 Rg, = ql
Y Muy=0; —Rpy-71—4ql-1001 —2ql- 6l +3ql 21— ql2+Rp, -1 =0
Ry = — 22l
39
ZFly:O' RBy+4ql+RA:O RA:qu
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2ql 2ql

3l 41 3!

#

Fig. 2.4.19.

The compound frame presented in Fig. 2.4.19. has been separated at hinges C, D into
two frames (Fig. 2.4.20.a.).

The upper frame is at three-hinged frame. The three-hinged frame has two support
reactions at each pin support. It is possible to write only three equilibrium equations for
the whole upper frame but there are four reactions. It is necessary to find one more
equation. The best equation in this case is a moment equation about the middle hinge. We
can decompose the upper frame into two simple frames (Fig. 2.4.20.b.) and calculate the
moment about hinge E (either for the left or for the right frame). If we take the right one
we can use the left part to verify the results. If we take the left one, we use the right for
verification.

a) b)
L R
241 E gl 2q1 ERx  Ro| dF
RI:'r? Ree 7
=
C &\‘- D IEL C &L D ED.'
RQ‘ thT RC"? RD_\‘T
Re |Ro
fr
44l
- B .RBX
?RBJ‘
31 41 3l

N1

N
k

Fig. 2.4.20.
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- frame DCE:

X Mpy = 0; —R¢y-71—2ql-3l—ql*=0  R¢y = —ql
X Fy =0; Rpy + Rcy =0 Rpy = ql
L Mg =0; —R¢y -4l +Rgy-3L=0 Rex = —2ql
Y Fyt =0; Rgy +Rey =0 Rgy, = ql
Y Fy' = 0; Rexy +Rgy +2qLl =0 Rpy = —gql
Y Fix=0; Rox +Rpy +2ql =0 Rpy = —gql

Fig. 2.4.21. presents the frame reactions and loadings.

2ql E 3ql
gl l qr’
- %q.’ E
4
c| 34!
| 34l
/ .
"t al |
il T T — D[
4ql 31
q
= e B
- =
¥ i{&: q
* %K_qlh 39 T
i gl
2 qly
N 4l N
Fig. 2.4.21.

Internal forces diagrams are presented in Fig. 2.4.22.
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Fig. 2.4.22.

2.4.2. Review problems - frames

Draw internal forces diagrams for the frames presented below:

Problem 1.
N 2q1
=~ |
4ql" +‘ g
il ] FINSNSEN Y

quT - |

b |

N o |
| |

] |

- |

A [+ |

AN EVAN
L { ) . 21

!
g 7 A il

Fig. 2.4.23.



Problem 2.

Problem 3.
Problem 4.
4ql° g
byl Y [ J
! ]
2l |
| S
|
|
|
|
o o
- |
- |
- | -
- ‘ N
. |
N |
B |
— ) ‘ S
N L v
3 l " l e l ¥ 2[ I

Fig. 2.4.26.
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Problem 5.

- -
|
21 |
2ql }
N "1
21 |
|
< m
e 4 , 3 3

Fig. 2.4.27.

2.5. Statically determinate curved members [1], [2], [4]
2.5.1. Introduction to arches [2]

Arches have been used for a very long time to span large distances in buildings and
bridges.

o . . . l
Taking into account the height of the arch, we can divide arches into flat (f < E) and

tall (f = é) ones, where f-rise (hight), I-span.
a) b)
c) d)

Fig. 2.5.1.

Model of an arch structure is a curved member restrained at its ends with
a combination of fixed, hinged, and roller supports. Fig. 2.5.1. illustrates various types of
arches due to their supports systems and connections:

o fixed-fixed arch (Fig. 2.5.1.a.),

e single-hinged arch (Fig. 2.5.1.b.),
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e two-hinged arch (Fig. 2.5.1.c.),

e three-hinged arch (Fig. 2.5.1.d.).

The three-hinged arch is a statically determinate structure and its reactions
and internal forces can be evaluated by static equations of equilibrium. The single-hinged
arch, two-hinged arch and fixed-fixed arch are statically indeterminate structures.

Types of arch due to the curvature of the arch:
e parabolic arch (Fig. 2.5.2.):

YA

Fig. 2.5.2.

Equation of the central line for a parabolic arch is presented below. Ordinate y of any
point of the central line of the parabolic arch (Fig. 2.5.2.) can be calculated by the formula:

y=f—f-x-(l—x), (2.11)
Hence slope can be expressed by:
dy 4f 4f
—=tgp =4 (I-2x) = ¢ = arctg [l—z- (1- 2x)] (2.12)

e circular arch (Fig. 2.5.3.):

Y

12 2

K1
T

*

-«

Fig. 2.5.3.

Equation of the central line for circular arch (Fig. 2.5.3.) has the form:

y=f—-r+ ’rz—(x—é)z (2.13)

and slope can be expressed by:
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dy [—2x [—2x (2.14)

E—tgqo— l > = @Q=arctg l >
2 rz—(x—) 2 rz—[x—)
2 2) |

e elliptical arch (Fig. 2.5.4.):

12 /2

N
T

¥

+

Fig. 2.5.4.

Equation of the central line for elliptical arch is presented below. Ordinate y of any
point of the central line of the elliptical arch (Fig. 2.5.4.) can be calculated by the formula:

y = \/fz _ 4f2.(l:_5)

(2.15)
Slope can be written as:
dy _ _ —f-@2x-1) _ —-f-2x-1)
= tgp = e = @ = arctg [—l. _x.(x_l)] (2.16)

2.5.2. Arches - internal forces [1], [4]

In this chapter, the general solution for the internal forces in a planar curved member will
be analyzed.

q

y "
- - mﬂ’ -
P \}‘@ﬂ{? Zﬂgﬁ P

Fig. 2.5.5.

The internal forces in a section of a body are those forces which hold together two
parts of a given body separated by the section. Both parts of the body remain in
equilibrium.
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The basic idea of internal forces has been described in chapter 2.1. and chapter 2.2.

Fig. 2.5.5. presents the simply supported arch under planar load. In a statically
determinate arch, we can calculate the support reactions from the three equations
of equilibrium (similar to beams or frames).

If we interest the arch with a section a1, we have three internal forces in this cross-
section: normal (axial) force Na1, shear (transversal) force Va1 and bending moment Mai.
Their positive positions are shown in Fig. 2.5.6.a. If we make a cross-section a2, three
internal forces will appear in it: normal (axial) force Naz, shear (transversal) force Va2 and
bending moment Mq2 (Fig. 2.5.6.a.).

Fig. 2.5.6.a.

Fig. 2.5.6.b.

As one can see the internal forces (shear and normal) that arise after cutting the bar
(section a1 — a1 and a2 - az2), which are parallel and perpendicular to the axis of the bar,
will change their position along with the curved line of the arch.

Actually, if we know the support reactions and loads we just needs to compose the
three equilibrium equations for the left (or right) part of the arch and will find the values
of the internal forces.

The equations depend on the adopted coordinate system We can perform calculations
either with respect to Cartesian coordinates (x, y) or with respect to polar coordinates (p, ).
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2.5.3. Relationships between loads, shear and moment
for arch with respect to polar coordinates [1], [4]

Let’s take into account the arch member shown in Fig. 2.5.6.a. and its differential element
(Fig. 2.5.6.b.). The external loadings have been reduced to the arch central line
(Fig. 2.5.7.), hence, there is also the distributed moment m = qt

Considering Vo, N« and Mq to be functions of ¢, expanding these variables in terms of
their differentials, and retaining up to first order terms we have the forces shown in
Fig. 2.5.7. One can write three equations of equilibrium for differential arch elements:

Y. F,=0; (2.17)
-V +4dv,) cos— +V, cos 22 — N, sin%2 — (Ny, +dNy) sin22 — qnds =0 (2.18)

—-dV, — ZNQZ —gpds =0 (2.19)
X Fye=0; (2.20)

(N, +dN)cos——N cosd -V sin 22 —(V +dV)sm—+qtdS—0 (2.21)

dN, — ZVaz +q,ds =0 (2.22)

ZM((:) = 0; (223)

—My + My +dM,) — V0 tan -V, +4dY, )Qtan— —mds =0 (2.24)
—dM, + V,ds + mds =0 (2.25)

de = 0,hence sindg = do; cosdgozl( sind?(pzd—(p; cosdT(pzl) ds = pdp

2

T
i
7\
A
A 0 ""‘.\
L d9
\ .";‘ de
I"‘.\ —2
Fig. 2.5.7.
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The differential equations of equilibrium have the form:

dVy . . &
E = —(qn 0 (226)
dNg _ Q
=t (2.27)
dMy

e =V +m (2.28)

As we can see above, there are connections between the distributed loads, shear and
moment functions.

2.5.4. Computational problems - arches

In this chapter the members of circular, parabolic and elliptical curvature of the arch will
be analyzed.

Computational example 2.5.1.

A semicircular arch is loaded as shown in Fig. 2.5.8.a. Draw internal forces diagrams.

a) b)

Fig. 2.5.8.

1. Degree of static indeterminacy: n = 0

2. Support reactions (Fig. 2.5.8.b.):

ZFiyZO; _P+RAy:0 - RAy:P
YXFEx=0; Ry =0
ZMAZO, MA_PZTZO b MAZZPT

To determine internal forces, we isolate an arbitrary span such as B-A defined in
Fig. 2.5.9.

3. Internal forces equations - span B-A (Fig. 2.5.9.)

In order to evaluate the axial (N«) force and shear force (Va), we need to specify the
angle @ between the tangential and the horizontal axis Fig. 2.5.9.
Now, we have to determine two components of concentrated P force: longitudinal

force component as well as a transverse force component (with respect to the section a) -
Fig. 2.5.9.
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Enforcing equilibrium for the right span leads to the general solution for the internal

forces.
SpanB-A 0<x<2r 0<y<r

z Fi; =0; N, = Psing

Z Fi,, = 0; V, = Pcosg

ZMiC = 0; M, = —Px

. r—x
sing = "
S r—x
@ = arc sin
Table 2.5.1. Internal force magnitudes
. X @ Va N, M,
Point
[r] [rad] [P] [P] [Pr]
T
B 0.00 3 0 1 0
1 0.20 0.927295 0.6 0.8 -0.2
2 0.40 0.6435011 0.8 0.6 -0.4
3 0.60 0.4115168 0.916515139 | 04 -0.6
4 0.80 0.2013579 0.979795897 | 0.2 -0.8
C 1.00 0 1 0 -1
5 1.20 -0.2013579 0.979795897 |-0.2 -1.2
6 1.40 -0.4115168 0.916515139 |-0.4 -1.4
7 1.60 -0.6435011 0.8 -0.6 -1.6
8 1.80 -0.927295 0.6 -0.8 -1.8
T

A 2.00 -3 0 -1 -2

Internal forces diagrams are shown in Fig. 2.5.10.
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Fig. 2.5.10.

Computational example 2.5.2.

A three-hinged parabolic arch is loaded as shown in Fig. 2.5.11.a. Draw M, V, N diagrams.

—=d4qi

6l

Fig. 2.5.11.
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1. Degree of static indeterminacy: n=4+2-3-2=0
2. Support reactions (Fig. 2.5.11.b.):
M, =0; Rpy -4l —4ql-21=0 —> Ry, =2ql
X Fy =0; —4ql+Ryy + Rg, =0 > Ry, =2ql
YME =0; Rpy-2l—2ql-1—Rp,-6l=0 - Rszgql

ZFixz(); Ryx —Rpx =0 - Rszgql

3. Internal forces equations (Fig. 2.5.12.)

Normal (axial) force N, in a section is an algebraic sum of all forces of the longitudinal
components located on the left (or right) side of the section. In the case of a curved
member, all vertical forces (y direction) should be multiplied by sin¢g and horizontal
forces (x direction) by cose.

Shear (transversal) force I/, in o section is an algebraic sum of all force components
normal to the longitudinal direction and located on the left (or right) side of the section.
In the case of a curved member, all vertical forces (y direction) should be multiplied
by cos@ and horizontal forces (x direction) by sin¢.

Bending moment M, in « section is an algebraic sum of all moments caused by forces
located on the left (or right) side of the section calculated about the center of the section.

Origin of the coordinate axis is located at point A as shown in Fig. 2.5.12.

Taking A as the origin, the equation of the central line for the three-hinged parabolic
arch is given by:

4(6l) 3 x?2

y=W-x-(4l—x)=6x—§T

The slope is evaluated by:
@y _ tgp =6 3x
ax 997 l

Hence, ¢ = arctg [6 — Bﬂ sing = (6 — 3?) cosQ
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SpanA-B 0<x<4 0<y<e6l
x/2
gx Vo = Ryycos@ — RyySing — qxcosg =
hm ql .
Uj— N, = 2qlcosp — ?smw — gx cosQ
M ql x
a = 2qlcosp — ?(6 — 37) cosp —qx cosp =0
Va
Ny = —RyySing — Ryxcos@ + qxsing
Vi
) l
= —2qlsingp — %cosq) + gx sing
M, = RAyx_RAxy - qx% =
_ Ao —3%) _ gy Xe
Ru_ |4 «x_ = 2qlx =3 (6x 2 l) x50
R/ly
Fig. 2.5.12.
Table 2.5.2. Internal force magnitudes
: X y ¢ Vo Ng Mg
Point
[ [ [rad] [q] [q]] [ql?]

A 0 0 1.405648 | 0 -2.02759 0
1 0.4 2.16 1.365401 | O -1.63435 0
2 0.8 3.84 1.299849 | 0 -1.24544 0
3 1.2 5.04 1.176005 | O -0.86667 0
4 1.6 5.76 0.876058 | 0 -0.52068 0
C 2 6 0 0 -0.33333 0
5 2.4 5.76 -0.87606 0 -0.52068 0
6 2.8 5.04 -1.17601 0 -0.86667 0
7 3.2 3.84 -1.29985 0 -1.24544 0
8 3.6 2.16 -1.3654 0 -1.63435 0
B 4 0 -1.40565 0 -2.02759 0
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0.521 0.521

Fig. 2.5.13.

Computational example 2.5.3.

A three-hinged semicircular arch is loaded as shown in Fig. 2.5.14.a. Draw internal forces
diagrams.

N~

Fig. 2.5.14.

1. Degree of static indeterminacy: n=4+2-3-2=0

2. Support reactions (Fig. 2.5.14.b.):
1 l
LM, =0; Rpy-l=3ql-3=0 > Rp, =3ql
1
ZFiyZO; _qu+RAy+RBy:0 b RAyzgql
1 1
ZM{;:O; RBy'El_RBx'Elz() - Rszgql

YFx=0; Ryx —Rpy =0 - Rszgql
3. Internal forces equations (Fig. 2.5.15.)
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TRA_}' TRA_}‘

Fig. 2.5.15.

Equation of the central line for semicircular arch presented in Fig. 2.5.14. has a form:

y =Vxl — x?
dy

1-2x l-2x
— = tgy = D 0= arctg [m], (x20 A x2])

X=0—>90=§ and x=l—>(p:—§

SpanA-C 0<x<5l 0<y<>l (Fig2515a)

. 3ql ql .
Vo, = RayCOSQ — RyySing — qxcosp = ?cosw - §Sln(p — qx coSQ
. . 3ql . ql ,
Ng, = —RypySing — Ryxcos@ + qxsing = —?smgo - §COS¢ + gx sing
x 3ql ql x
My, = Ryyx—Ryxy — qxz = ?x - §y - qxz

SpanC-B ~l<x<l =l>y>0 (Fig2515b)

l
Vo, = RayCOS@ — Ryysing — q Ecosq)

3ql ql l ql ql

= ?cosgo —Esingo - qz cosp = —Ecosgo —Esingo

l
Ng, = —Ryysing — Ryycosp + qzsinfp

3ql . ql L ql ql
= —?suup - §C05(p + qi Sing = gSlTl(p —ECOS(,D
l IN 3ql ql l l
Me, = Riyr—Ray =3 (x —3) =g x ~gv—a5(x~7)

Table 2.5.3. presents internal force magnitudes.
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Internal forces diagrams are shown in Fig. 2.5.16.

o117 0125 -0.147

Fig. 2.5.16.

Table 2.5.3. presents internal force magnitudes.
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Table 2.5.3. Internal force magnitudes

Point X y ¢ Va Ne My
[ [ [rad] [q]] [q]] [qF?]

A |0 0 1.570796  |-0.125 -0.375 0
1 0.1 0.3 0.927295 | 0.065 -0.295 -0.005
2 0.2 0.4 0.643501 | 0.065 -0.205 0.005
3 0.3 0.458258 |0.411517 |0.018738635 |-0.14456 |0.010218
4 0.4 0.489898 |0.201358  |-0.0494949  |-0.11747 |0.008763
C 0.5 0.5 0 -0.125 -0.125 0
5 0.6 0.489898 |-0.20136  |-0.09747449 |-0.14747 |-0.01124
6 0.7 0.458258 |-0.41152  |-0.06456439 |[-0.16456 |-0.01978
7 0.8 0.4 -0.6435 -0.025 -0.175 -0.025
8 0.9 0.3 -0.9273 0.025 -0.175 -0.025
B 1 0 -1.5708 0.125 -0.125 0

Computational example 2.5.4.

An elliptical arch is loaded as shown in Fig. 2.5.17. Draw internal forces diagrams.

a)

12

/2

»

Fig. 2.5.17.

1. Degree of static indeterminacy: n =0

2. Supportreactions (Fig. 2.5.17.b.):

ZMA =0;
ZFiy =0;
ZFix = 0;

84

1 l
RBl_quZ_O

1
_qu+RAy+RB :0
RAxZO

1

RB :_ql

8

3
RAy = gql

A




3. Internal forces equations (Fig. 2.5.18.)

ke,
Fig. 2.5.18.

Equation of the central line for the elliptical arch shown in Fig. 2.5.17. has a form:

y= %\/xl — x?

dy _ l-2x _ I-2x ],
== tgp = P e = @ =arctg [—8 —xl_xz], (x20 A x#I)

x=0 <p=§ and x=I <p=—g

SpanA-C 0<x<sl 0<y<:I

3ql

Va1 = RAyCOS(p — qxcosp = ?cosgo — qx cosQ

3
Vo, =0 - x= §l

. . 3ql . .

Na1 = —RAysm(p + gxsingp = —?smgo + gx sing

x 3ql X
Mg, = Rpyx — qxz = ?x - qxz

2
31 3ql 31 31 9
Moment extrema: M, (x = —) =L.=_ 3(—) =—ql?
1 8 8 8 2\8 128

Span C-B %le<l %l2y>0

l 3ql l ql
Vo, = Raycosp — q Ecosq) = ?cow - qz cosp = —§c05<p
. L 3ql . L ql .
Ng, = —Ryysing + qism(p = —?smgo + qz sing = §Sln(p
l l 3ql l l
Ma, = Ry —a5(x—7) ="gx—az(x—3)
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Table 2.5.4. Internal force magnitudes

Point X y ¢ Ve Ne My
[ [ [rad] [q] [q] [qF?]
A |0 0 1.570796 | 0 -0.375 0
1 |01 0.075 0.927295 0.165 -0.22 0.0325
2 0.2 0.1 0.643501 0.14 -0.105 0.055
3 03 0.114564 | 0.411517 | 0.068738635 |-0.03 0.0675
4 (04 0.122474 | 0.201358 |-0.0244949 |0.005 0.07
C |05 0.125 0 -0.125 0 0.0625
5 06 0.122474 |-0.20136  |-0.12247449 |-0.025 0.05
6 0.7 0.114564 |-0.41152 -0.11456439 |-0.05 0.0375
7 0.8 0.1 -0.6435 -0.1 -0.075 0.025
8 |09 0.075 -0.9273 -0.075 -0.1 0.0125
B |1 0 ~1.5708 0 -0.125 0

Internal forces diagrams are shown in Fig. 2.5.19.

-0.024

0125 gz
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Fig. 2.5.19.
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2.6. Statically determinate planar truss structures
2.6.1. Basic information about trusses [1], [3], [5]

The truss is one of the major types of engineering structures. Trusses are used commonly
in buildings, towers and bridges. Fig. 2.6.1. presents examples of trusses [1].

We limit our attention to the planar trusses, i.e. all truss members are located in one
plane and loads are also applied in this plane.
Truss definition:

Trusses are idealized structures consisting of straight and slender rigid bars
(members of a truss), arranged such that its centroidal axis coincides with the line
connecting the nodal points. Truss members are connected together with frictionless pin
joints and connected only at the ends of the members. All forces (loads and reactions)
must be applied at the joints and are transmitted from one member to another through
pins. The weights of the members of the truss are also assumed to be applied to the joints.

Howe Whipple
Pratt Fink
Warren Parker

Fig. 2.6.1. Examples of named truss [1].

The consequence of the idealization described is that members of a truss are so-called
“two-force members” which carry only a pair of equal magnitude, oppositely directed
forces along their length (Fig. 2.6.2.).

N1 N1

< I 1 B

< i } » tensile member

N2 i compressive member

> <

The types of stable trusses:

e simple truss (Fig. 2.6.3.a.),

e compound truss - combination of two or more simple trusses together
(Fig. 2.6.3.b.),

e complex truss - one that cannot be classified as being either simple or compound
(Fig. 2.6.3.c.).
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>

Fig. 2.6.3.

Kinematic stability and static determinacy of planar truss [1], [2]

Three bars joined by pins at their ends constitute a rigid structure (Fig. 2.6.4.).
The term rigid is used to mean stable and also to mean that deformation of the members
due to induced internal strains is negligible.

Four bars pin-jointed to form a rectangle constitute a unstable system (Fig. 2.6.4.).

stable system unstable system

Fig. 2.6.4.

Simple planar truss structures are formed by combining one-dimensional linear
members to create a triangular pattern. The structure which consists of a triangular
arrangement of members that are pinned at their ends create a rigid structure. In terms
of stability, the most simple truss can be constructed in the shape of a triangle using three
members.

Each node (pin, joint) of a plane truss is acted upon by a set of coplanar concurrent
forces. There are no moments since the pins are frictionless and the lines of action of the
forces intersect at the node.

If the entire truss is in equilibrium, a single node is also in equilibrium. For the
coplanar concurrent force system there are two equations of equilibrium:

YF,=0 and YF, =0 (2.28)

So for j number of nodes (joints) we have 2j equations of equilibrium.
Hence, the degree of static indeterminacy can be determined by using the formula:

n=r+m-2j (2.29)
where:
n - degree of static indeterminacy,
m - number of truss members,
r - number of support reactions,
j - number of joints.
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If

n = 0 -statically determinate truss,

n > 0 -statically indeterminate truss,

n <0 -unstable truss system - mechanism.

When more members are present than are needed to prevent collapse, the truss is
statically indeterminate. A statically indeterminate truss cannot be analyzed using the
equations of equilibrium alone.

Sign convention: tensile forces are denoted with + sign (are positive), compressive
forces are denoted with - sign (are negative).

There are two basic methods used for truss solving: method of joints and method of
sections. Sometimes, we can have statically determinate truss for which both method of
joints and method of sections will be not convenient to use. In this case we can use
Henneberg’'s method [2].

2.6.2. Analysis of planar truss [1], [3], [5]

Analysis of planar truss includes:
e determining the support reactions,
e determining the internal forces in each of the members (tensile or compressive).

In some cases we can simplify the analysis by finding “zero-force members”.

“Zero-force members”

The simplification is possible when:

e the joint has two non-collinear members with no external force at the joint
(Fig. 2.6.5.a.):

2F;

iy, =0 - N,=0 and 5F, =0 > N, =0

¢ in the joint there are two collinear members (N1 and N2) and a third member (N3)
(Fig. 2.6.5.b.). We see from the force summation in the y-direction that the force N3
must be zero and from the force summation in the x-direction that the other two forces
must have the same magnitude but opposite sense.

a) b)
\V
|
M /JJ‘ NZ X
N=0 Ny=Ng
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The zero-force members are not useless. Although these members don’t carry any
loads, some of them would probably carry loads if the loading conditions were changed.
They are necessary to maintain the truss in the desired shape and to make the truss stable.

When applying the method of joints or method of sections it is convenient to first
determine the reactions from the equations of equilibrium of the total planar structure.
Knowing the reactions will make it easier to find the truss members forces.

e Method of joints

In the method of joints, we first find a joint with at most 2 members connected
(two unknowns) and by using two equations of equilibrium ¥ F;, =0 and Y F, = 0,
the unknown forces can be determined.

Then we work our way through the structure, one joint at a time, picking joints with
at most two unknown members. Known reactions can help locate a joint that has only two
unknown member forces.

Hence, for a statically determinate truss (Fig.2.6.6.a.), we calculate the support
reactions first from the three global equilibrium equations:

YMs=0, $F, =0 and ¥ Fy=0

8
=
(0 5 X
4L Rix
PZ’ RSJ‘
. ¥
b)
’ Noag Ni-s
@
NZ—I @ N2—3 N4_3 N4—5
P,
B @ Ns—7 ® N7-a Ns-7

Ne-s3

Nr-¢
8-5
Nr-s =3
Ne-z No—4

Fig. 2.6.6. Planar truss — method of joints.

We pick joint 1 (Fig. 2.6.6.b.) and for this joint we apply the force-balance equations:

ZFl-x =0 and ZFiyzo
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We indicate a tensile member force with an arrow pointing away from the joint.
The opposite sense is used for compression.

Next, we can write two similar equations of equilibrium for joint No. 2. After this
we can set two equations for the joint No. 6 then No. 7-No. 3—No. 4—No. 8.

After finding the last force (joint No. 8) all truss member forces will be determined.
The total number of joints equilibrium equations is equal to sixteen. If we use three global
equations of equilibrium to calculate the support reactions, there are only 15 independent
equations left to apply to the joints. As one can see, three equations (one for joint No. 8
and two for joint No. 5) haven’t been used, so we can use them to verify the results of our
calculations. The method of joints is suitable to be used when we need to determine all
the member forces.

e Method of sections (Ritter’s method)

This method is suitable to be used if one wants to determine only the force in
a particular member. Applying the method of joints might not be convenient because
it involves first finding the force in other members.

However, the method of sections can also be used to determine all the member forces
in a truss [1]. Let’s consider the truss shown in Fig. 2.6.7.a.

a)

Fig. 2.6.7. Planar truss — method of sections.

Suppose the force in member Ne-7 is desired.
First we have to determine the reactions from the three global equilibrium equations
for the planar truss:

NM5=0, $F, =0 and XFy=0
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With the reactions known, we cut the truss structure into two segments, we isolate
either the left or right part, and apply the three global equilibrium equations to the
segment.

The cutting plane must cut the particular member whose force is desired, and the
other two members that are concurrent. There are only three equilibrium equations
of planar loading, and therefore, we can cut only three members (Fig. 2.6.7.a.).

To determine Ns-7 one can use the vertical cutting plane I-I and consider the left
segment shown in Fig. 2.6.7.b.

We can use the moment equilibrium condition with respect to joint No. 3 which is the
point of concurrency for members 2-3 and 6-3.

ZM3=0 _N6_7h_R1'2l_P1h=0 - N6—7= h

If the force in member N2-3 is desired, one can use the moment equilibrium condition
with respect to joint No. 6 which is the point of concurrency for members 6-7 and 6-3.

ZM6 =0 N2_3h - Rll =0 - N2_3 = RTll
We can determine force Ne-3 using the formula:
. R
Z Fiy =0 _N6—3 -sina + Rl =0 - N6—3 = Sinlll

Similarly, to determine forces in members 7-8, 8-3 and 3-4 we can use the vertical
cutting plane II-1I and consider the right segment shown in Fig. 2.6.7.c.

e Henneberg’s method (truss member replacement) 2]

In order to determine the member forces, one has to establish the complete set
of nodal force equilibrium equations expressed in terms of the member forces. If the truss
is statically determinate, the number of equations will be equal to the number of nodal
forces unknowns. These unknowns can be found by solving the system of equations.
However, finding the solution for a complex truss using the “solve-by-hand” method can
be both inconvenient and time consuming.

In the case of statically determinate complex truss (Fig. 2.6.8.) for which both method
of joints and method of sections are inconvenient to use, we can use Henneberg’s method.

In this method we replace one truss member by its axial force X (Fig. 2.6.8.b.c.d.).
This will make the structure unstable. Therefore, we add one “extra” (z) member
to ensure truss stability. Obviously, the magnitude of force in the “extra” member is equal
zero. Using this condition and the superposition method we can calculate the force in the
removed bar.
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Fig. 2.6.8. Complex truss — Henneberg's method

The truss modified in this way can be first solved (using both method of joints and
method of sections) for a given loading and then solved for the unit force X = 1.
Hence, we have:

Ni= Nj_,X + N} (2.30)
wl_lere:
N}{ -1 — “i” member force determined in the modified truss under the loading X = 1,
Np - “i” member force determined in the modified truss under the external loading P,
X - removed member force.

The “extra” (z) member doesn’t exist, so the magnitude of NZ is equal zero.
Thus,

N?=NZ,X+NZ=0 (2.31)
_ _ M
X=—3k (2.32)

If one knows the X force, the forces in the remaining truss members can be determined
using the formula:

Ni=Ni_ X + N} (2.33)
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2.6.3. Computational problems - trusses
Computational example 2.6.1.

Determine the member forces of planar truss by the method of joints. The truss and
loading are defined by Fig. 2.6.9.

2P 4P
2 3 q 7 g 4P
1L/ o 10
4 6 8
L I

Solution:
The degree of static indeterminacy:
n=r+m-2j=3+17-2-10=0

r!

‘ 2P 4P
2 3 7 g 4P
( ~
Rix 1 Ot\ o 10 x
4 8 A
2p —
Ry R
K / % / % [ v / b
1 Al Al i 71
Fig. 2.6.10.

Support reactions (Fig.2.6.10.) can be determined by using the three global
equilibrium equations for the coplanar forces system.
EM:l:O —>—ZP-I—ZP'BI—4P'31+R10'4l+4p'l=0—>R10=4P
JFb =0 - R,-4P =0 - Ry, = 4P

“Zero-force” members are shown in Fig. 2.6.10.
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Ni-s 2P
o) Nz @ Ns-s ®
R, N (07 / Ns_3 Ns_»
x 1-4
R,y N ¢ Ns-s
NgZ, N34
4P
N3_5 N7—5 ® N7_9
! Nys No-s No-7 o (X/
a 0‘ N?—IO
N @ N Ne-4 @ Ns—-a Nyg N7-g
4-1 4-8
N1o-7 | Nio-s

Ns-7

Ns-7» (@ 4P AN

Ns-s Ns-10 Nio-g
2P No-10 Ry,
Fig. 2.6.11.
J[oint 1 (Fig. 2.6.11.)
N,_,=0 sina = cosa = g

$F,, =0 Nyssina+R;y+N;_, =0 > Ny_3= —4/2P
ZFl' = 0 N1_3C05‘0( + N1_4_ +R1x = 0 i N1_4_ = 0

[oint 4
Ele = O - N4_1 + N4—6 S O i N4—6 S 0

J[oint 3 (Fig. 2.6.11.)
. V2
Sina = cosa = 7
JF, =0  —N;_jsina — 2P — N;_gsina —N5_, = 0 - Nz_¢= 2¢/2P
JF, =0 —N,_3—N;3_jcosa + N3_5+ N;_gcosa = 0 —> N;_5=—6P

Joint 5 (Fig. 2.6.11.)
JFy, =0 — Ny 3+N;_,=0 - Nz_,=-—6P

Joint 6 (Fig. 2.6.11.)
. V2

sina = cosa = —

YF,, = 0  Ng_gsina + Ng_,sina —Ng_s = 0 = Ng_, =—22P

ZFl' =0 —N6_4—N6_3C05‘0( + N6—8 + N6_7C05‘0( =0 - N6—8 = 4P
J[oint 8 (Fig. 2.6.11.)

ZFiy =0 N8_7_2P =0 - N8—7 = 2P

JFy =0 —Ng_g + Ng_10=0 — Ng_49=4P
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J[oint 7 (Fig. 2.6.11.)

. V2
sina = cosa = —

JF,, =0  —N,_gsina — 4P — N,_osina —N,_g = 0 - Ny_jo= —4\J/2P
EFL == O —N7_5—N7_66050l + N7_9 + N7_10C05a == O d N7_9 == _4P

Verification:

Joint 9 (Fig. 2.6.11.)
JFy, =—Ng_,-4P =4P—-4P =0
2Fy =-Ng_10 = 0

[oint 10 (Fig. 2.6.11.)
, 2
sina = cosa = —-

V2
EFL = _N10—8 —_— N10_76050l = _4P +4’\/§P7 == O

EFly :Rlo + N10—9 + N10_7Sin0{ = 4’P _4\/§Pg - 0

Computational example 2.6.2.

Determine the member forces 5-7, 6-7, 6-8. The truss and loading are defined
by Fig. 2.6.12.

The degree of static indeterminacy:
n=r+m-2j=3+17-2-10 =0

2P 4P
2. 3 5 Irf Z g 4P
I
|
|
/@) y f 10
4 7 8
b P
L / % / % [ % / |
4 71 71 71 7
Fig. 2.6.12.
y!
2P 4P
2 3 q ‘:I ya 9 4P
i
I
q ~
{
R 1 OL\ oAy 10 x
4 7 8
I lzP ——
Koy 0 o0, 4 lRw
A A A | A
Fig. 2.6.13.

96



Support reactions (Fig.2.6.13.) can be determined by using the three global
equilibrium equations for the planar structures.
ZMl S 0 —ZP'l— 2P‘3l _4P‘3l + RlO ‘4l+ 4’P'l:0 i RlO S 4’P
JF, =0 Rixy-4P =0 - Ry = 4P
2F, =0 —2P + Ry, - 2P- 4P + Ry =0 - Ry, = 4P

Zero-force members are shown in Fig. 2.6.13.

To determine forces of members 5-7, 6-7, 6-8 we can use the vertical cutting
plane I-1 shown in Fig. 2.6.14.

I-I
2p 4P
2‘_ 3 5 Ns.7 Nsr va 4P
N6-7/
N7
RIx 1 a 8 10
AN 4 6 Nos  Nos %
2P
Ry R
Fig. 2.6.14.
4P
Ns.7 | 9 4P
Nﬁ—?/
//'
6a a {Vﬁ-s 8 .10
2P |
R
Fig. 2.6.15.

Equilibrium equations for the right segment of truss (Fig. 2.6.15.):

YM;, =0 - —Ng_g-l—Rjp-1=0 > Ns_g=4P
SM¢g=0 > Ng_,-l+Rjg-2l+4P-1—4P-1—2P-1=0 - Ns_, = —6P
YFy, =0 > Ryg—Ng_y-sina—4P —2P =0 - Ng_, = —2v2P
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Computational example 2.6.3.

Determine the member forces 2-3, 9-8, 8-2, 7-8, 7-3, 3-4 of planar truss. The truss and
loading are defined by Fig. 2.6.16.

[/2CI|/20'|/ 2CI|/ 2a|,
A 7l A 7 7

Fig. 2.6.16.

Solution:

The degree of static indeterminacy:
n=r+m-2j=3+17-2-10=0

,Zero-force” members are presented in Fig. 2.6.17.

T

|/20‘[/2£?[/2ﬂ'[/20|/
1 1 71 A

Fig. 2.6.17.

Support reactions (Fig.2.6.17.) can be determined by using the three global
equilibrium equations for the planar structures:

YM; =0 - 3P-2a+Ryy-6a+4P-3a=0 - Ry =-3P
YFi,=0-> —R4y,—4P—-P=0 - R, =—-5P

98



L 2CI|/ QCJ’V
A A A

Fig. 2.6.18.

To determine forces of members 2-3, 9-8, 2-8 we can use the vertical cutting
plane I-I shown in Fig. 2.6.17. and consider the left truss segment (Fig. 2.6.18.a.).

Three equations of equilibrium have the form:

) 3
sina = —

V13
ZM2=O_) _N9_8'3a+P'2a_R1'2a=0_) N9—8=0

ZMSZO_) N2_3'3a—R1'4a—3P'2a+P'4a=0—> N2_3:2P

ZFly:O_> R1+N2_8'Sina+3P_P:0_) N2_8:_V13P
To determine forces of members 7-8, 7-3, 3-4 we will use the vertical cutting

plane II-1I shown in Fig. 2.6.17. and will consider the right truss segment (Fig. 2.6.18.b.).
Three equations of equilibrium have the form:

ZM3:O_) N7_8'3a+4P'3a+R4y'2a=0—> N7_8:_2P

ZM7=O_) _N4_3'3a_R4_x'3a_P'3a=0_) N4_3=4‘P

ZFly = O g R4y — N7_3 . Slna = 0 b N7_3 = -V 13P
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Computational example 2.6.4.
Determine the member forces 3-5, 3-6, 4-6, 7-5, 7-6, 6-8 of planar truss. The truss and
loading are defined by Fig. 2.6.19.a.

a) b)

AT AT
] S
N N
AT AT
] ]
A o™~
AT AT
3
3 3
AT AT
3
~ ~
N N
N 5 = N
R].t

Fig. 2.6.19.

Solution:
The degree of static indeterminacy:
n=r+m-2j=3+17-2-10=0
»Zero-force” members are shown in Fig. 2.6.19.
Support reactions (Fig. 2.6.19.b.):
XMy =0 - 3P-6a+R;,-3a—P-3a=0 - R,, =-5P
>F,=0-> R, —3P=0-> Ry, =3P
To determine forces of members 7-5, 7-6, 6-8, we will use the horizontal cutting
plane I-I shown in Fig. 2.6.19.b. and will consider the upper truss segment (Fig. 2.6.20.a.).

3V13
13

In this case three equations of equilibrium have the form:
YFi,=0-> Ng_,-cosf=0-> Ng_,=0
YM; =0-> —Ng_g-3a—P-3a=0-> Ng_g=-P
YMg=0—-> 2P-3a+N5_,-3a=0 - Ns_, =—-2P

cosf =
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I-1 I1-17

L Jd L

Fig. 2.6.20.

To determine forces of members 3-5, 3-6, 4-6, we will use the horizontal cutting plane
[I-1I shown in Fig. 2.6.19.b. and will consider the bottom truss segment (Fig. 2.6.20.b.).
Equilibrium equations for the bottom segment of truss:

V2
cosa = 7
YFiy =0—> Ryy+Ng_3-cosa=0-> Ng_3 o5 3

ZM6 =0- _N3_5 -3a — Rly . 3a+R1x -6a=0- N3_5 = -2P
ZM3 = O - N4—6 . 3a + Rzy . 3a+R1x . 3a = 0 - N4—6 = 2P

Computational example 2.6.5.

Determine the member forces 8-7, 3-4, 13-7, 13-4 of K-type truss using the method of
sections. The truss and loading are defined by Fig. 2.6.21.

6P
10 9 8 7 6 4P

b

. 11] 12 13 14)
37a
[ P
AN > X -
!|>}’ 2z 3 4 5
3P

|,2al/2a|/2a|/2av
71 | 4 | 71

Fig. 2.6.21.
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Solution:

6P
N 6 4P
3a
370'
ANE J_-_P X
b

L 2a L 2d % 2d L 2a [
| A Il 1 1
Fig. 2.6.22.

The degree of static indeterminacy:
n=r+m-2j=3+25-2-14=0

We do not have to determine the support reactions if we consider the right segment
of truss.

A vertical section such as I-I cuts four truss members and does not lead to a solution.
There are no vertical cutting planes that involve only three unknown forces. For this type
of truss, we have to also take into account plane II-II to get the solution.

To determine forces of members 8-7 and 3-4 we can use the vertical cutting
plane I-I shown in Fig. 2.6.22. and consider the right truss segment (Fig. 2.6.23.a.).

a) b)

N N
3a 3a
3a 3a
2 2
NE T XAl

Fig. 2.6.23.
Equilibrium equations have the form:

YM;=0 - Ng_,-3a+4P-3a—6P-4a=0 - Ng_, =4P
ZMSZO_) _N3_4'3a_P'3a_6P'4a:O_> N3_4:_9P
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To determine forces of members 13-7 and 13-4 we can use the vertical cutting plane
[I-II shown in Fig. 2.6.22. and consider the equilibrium of the right truss segment
(Fig. 2.6.23.b.).

Summation of forces in the x and y direction gives:

YFiy =0 > —6P — Ny3_; - sina + Ny3_, - sina = 0

Zle S 0 - _4'P — P — N13_7 ccosa — N13_4 s cosa — N8—7 - N3_4 =
= —Nj3_7-cosa — Ni3_, - cosa =0

. 3 4
sina = - cosa = =
5 5

Hence:
Ny3_4 = 5P

2.6.4. Review problems - trusses

Problem 1.

Determine the member forces 3-5, 3-4, 2-4, 5-6, 6-B, B-8, 6-7, 6-8,9-11, 10-11, 10-C
for the compound truss shown in Fig. 2.6.24.

Fig. 2.6.24.

Problem 2.

Determine the member forces of planar truss by the method of joints. The truss and
loading are defined by Fig. 2.6.25.

P
6 7 8 9 10 2pr
J
1 2/ a 3 4 )
Pt A%
L 3 L 31 L 3l L 3 L 3l L
4 2 7 7 7 7
Fig. 2.6.25.
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Problem 3.

Determine the member forces 9-8, 2-8, 2-3, 7-6, 7-4 and 3-4 of planar truss.
The truss and loading are defined by Fig. 2.6.26.

3a

e 3 AN 5
P
L 2a [ 2a v 2a I 2a [ 2a [ 2a % 2a % 2a I
A A A A A 7 A 7 A
Fig. 2.6.26.

Problem 4.

Determine the member forces of planar truss presented below.

izp
2P _ N - P

7 P BV SR PR/ S 2R

P e 4 o & o, F L, § g

e

Fig. 2.6.27.
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o

¥, 2

Fig. 2.6.27.
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3. Review problem solutions

3.1. Review problem solutions - beams

Problem 1.
N G
9 (xs)
e o 20 "
[ A B C D,
RAx 2' % * J
! 7(]()(4)301
TR(*
L 31 )
Fig. 3.1.1.
1. n=0
2. Reactions:
X Fy =0; —6ql+R;—3ql =0
XMy =0; —M, +6ql-1+4ql>—3ql-21=0
RAJC = O RC = 9ql MA = 4‘ql2

3. Internal forces equations:

SegmentA-B 0<x; <l

V(x;) =0
M(x;) = 4ql?
N(x) =0

SegmentB-C 0<x, <!
V(x,) = —6ql
M(x,) = —6ql - x, + 4ql?
M(x, = 0) = 4ql?
M(x, =1) = —6ql -1+ 4ql* = —2ql?
N(x,) =0

SegmentC-D 0 <x3 <!
V(x3) = —6ql +9ql = 3¢l
M(x3) = 4ql?> — 6ql- (L + x3) +9ql - x5 — 4ql?
M(x; = 0) = 4ql? — 6ql -1 — 4ql? = —6ql?
M(x;=1)=4ql> —6ql- (Il +1)+9ql-1—4ql*> = —3ql*
N(x3) =0

106



T gt
Tqu g
| |
3 3 20
a ! +‘/ N
: V) [al]

_ 6 H 6
6 TTT o
/V% m%mﬁxﬂu M) [al’]

i

A%
e
N

4
o— o | ¢ S (N) 141
Fig. 3.1.2.
SegmentE-D 0 <x, <3l
q(x4):2_q N (x)zqu4
X, 3l TXa) = 73
1 1 2qx, _qx,’
V(x4)—ZQ(x4) x4—2 3 X4 = 31
v —3)—31
¥e=o0) T
V(x, =3l) =3ql
1 1 2 (x4)3
Mlr) = —lq(e) xS = L2 m g G
M(x, = 0) = 0
wlem3)-o
¥ =3t T g
30)3
M(x4=3l)=—q-(9l) = —3ql?

N(x,) =0
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Problem 2.

4ql2
¥ m=ql
S Y (
q
. 2/ ' 21 )
4.;‘,'1’2
RB\ B ( R(\
i q T
TRB)' 2(11’ RC]’
M. I
m-q R 3
Cg%)aaq;m_ﬂ
LRB)'
R{r
Fig. 3.1.3.
l.n=r+2s—-3t=44+2-3-2=0
2. Reactions:
2 Fix = 0; Rpx = Rcx =0
- right beam:
ZFiy = 0, RBy + Rcy + qu =0 Rcy = _gql
- left beam:
ZM(A) :0, _MA_mZI_RByZI: _MA_qIZI_RByZI :O MA :_4qlz
ZFiy = 0, _RBy + RA_’V =0 RAy = ql
3. Internal forces equations:
SegmentB-A 0<x; <2l
V(x) =ql
M) =—m-x; —ql-x; =—ql-x; —ql x; = —2qlx;

M(x; = 21) = —4ql?

SegmentB-C 0<x, <2l
V(xz) = ql + qx;
V(x, =0) =ql
V(x, =20) = 3ql
M(x;) = ql-x, +qxp 2 = ql - x +q-%
M(x,=0)=0

M(x, = 21) = 4ql?
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>AT1 F R qf TN
X, | gx2
qli—2 3ql
4qF |<—A]——i
»\}g m B 0
ql qu
| oy

Problem 3.

2q
L 3/ L 2] L 2!
Fig. 3.1.5.
l.n=r+2s—-3t=44+2-3-2=0,
2. Reactions (Fig. 3.1.6.):
Rpy = Ryx =0
- right beam:
ZFLyZOI RBy+RC_2ql:0 Rczqu
- left beam:
ZFl-y = 0; —Rpy, +3ql+ Ry, =0 R4y, = —3ql

109



3. Internal forces equations:

Segment B-A 0 < x; < 3l

q(x) _2q ) = 204
x, 3l )= 73

1 1 2qx _qxy’
V(xl) - = 2 Q(xl) xl - 2 3l xl - gl

V( —30— 30
1=t T T
V(x, = 31) = —3ql

_1 e ol zea o a0
M(x1)—ZQ(x1) X1°5 =7 g T T4,
M(x;=0)=0
M( —30—312

X1 = 54T 8q
303
M(x;, =3l)=q (3 = 3ql?
9]
Segment B-C 0 < x, < 21
V(xz) - O
M(x;) = —4qlz
4qi‘7
RBA B C qu[
i Jra
M. TRB-" RT
RJ.\' gA B‘ RB
% -
TM 2 Roy
Ry 3ql -~ -
P =
AR
0 Vol
Sq[-j X T() TZL]/
0 ( 24 ﬂﬁl\) B" 0
3qll21 F 2wl . 5
i ELLL (W)l
| | |
3 o 4‘ 4 i
i
M) 1a#1

Fig. 3.1.6.
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Segment D-C 0 < x3 < 21

V(x3) = 2ql
M(x3) = —2ql - x5
M(x; =0)=0

M (x5 = 21) = —4ql?

There are no horizontal loads, hence N(x) = 0.

Problem 4.
4qF
2ql 2q y
ili l C D Mf '/F> Gﬂ_m_ﬂ_ﬂ_l[H
I - 2 A
S B 31 /) 21
21 3ql
R jq
Dy D E RE\
s et
I R o
Dy 2
M. lzq] Rzy ’/74611 ;
R ( fiIA c p_ Ro Re F, G T &
| B A r 7~ AN
e RD\ lREr A 77
; /
RCT Re TRU e L
Fig. 3.1.7.
1. n=r+2s—3t=5+4-3-3=0
2. Reactions:
Rox =Rpy = Rg, =0
- middle beam:
ZFiy = 0, REy + RDy - 3ql S 0 RDy = ql
- right beam:
ZM(F) =0; Rg-2l—2ql-3l+Rg, 21 +4ql?=0 R;=—ql
ZFl-y=0; RG+RF_REy_2ql=O szsql
- left beam:
ZFl-y = 0; —Rpy, —2ql+ R =0 R, = 3ql

3. Internal forces equations:

SegmentA-B 0<x; <l
V(x) =0
M(xl) =0
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SegmentB-C 0<x, <!

V(x,) = —2ql
M(x,) = —2ql-x,
M(x, =0)=0

M(x, =1) = —2ql?

SegmentD-C 0 <x3 <2l

V(x3) = ql
M(x3) = —ql - x3
M(x3=0)=0

M(x3 = 21) = —2ql?

SegmentD-E 0 < x, <3l

q(xy) _2q () = 20
X4 3l 1'%

1 2
V(x4) =ql—§q(x4)-x4=ql—— X, = ql - 30
V(x,=0)=ql

V( —31)—11
x4—2 —461
V(x, =3l) =—-2ql

V(xy) =0 eql—%-zg%-lezo - 3ql2—qx, =0 - x, =+/31
1 1 2 (x4)3
M(x4)=qlx4—zq(x4)-x4-%=qlx4—5'%'xz;'%:qlxz;—q'x:l
M(x, =30)=0
N,
M(x4=\/§l)=ql-\/§l—q-%=§\/§qlz
SegmentE-F 0 < x5 < 2l
V(xs) = —2ql
M(xs) = —2ql - x5
M(xs =0)=0

M(xs = 21) = —4ql?

Segment F-G 0 < x4 <2l
V(xe¢) = —2ql + 5ql = 3ql
M(xg) = —4ql% — 2ql - (21 + x¢) + 5ql - x¢
M(xg = 0) = —4ql? — 2ql - 21 = —8ql?
M(xg = 21) = —4ql? — 2ql - (21 + 21) + 5ql - 21 = —2ql?
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SegmentH-G 0 <x, <2l

V(x7) = qx;
V(x, =0) =0
V(x; =21) = 2ql
2
M(x,) = —qx; - 2= —q - 22

M(x, = 21) = —2ql?

There are no horizontal loads, hence N(x) = 0.

| X

— e,
2q
D ! E
AN # Jras
]T %q(.w},w*i 2!
7 I Xs
P 1By j ! .
TR e
qh lq C D E ? GAH”I”J”H
s 2 qu y = A 1{, .
q ~ 3 2
T-?qi Jq/T #qi 4
| | | | | | | |
| | | ! . | 3 ’ |
] TR T ' ) M'@)[CJ;]
Tl | SR | |
LT N R E Y A " | |
| 8
| | | | | | |
| | | | ' | | |
| | | | ' | 4 | !
I 'M' ! B |
—- W @) [dF]
3° %F
Fig. 3.1.8.
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Problem 5.

4ql?
P ¥

-

Y] D

Tqu

A

21

21

3l

Fig. 3.1.9.

(S % <
= =
S _/_J
o ~
~
~ ]._ﬂ“
- ~I%a
]
~
)
o
~]
S
IS4 m
R
=
~
S
o
~
o

2
30

=

Fig. 3.1.10.

There are no horizontal loads, hence N(x) = 0.
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Problem 6.

4qr° 4ql
Q F 6.7 %

a = 30°

21
Fig. 3.1.11.

3l

[P

Fig. 3.1.12.
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3.2. Review problem solutions - plane frames

116

20

Fig. 3.2.2.

Problem 1.
2 N o
|
: ~ 2ql
4qf’ ™ . 4(]1: - g
7777777777 :;gugguﬁugu" il g NS SNEEES
zq:f : zqu ]
| |
| |
I P~ 1 2ql
B 4 R ] B: y 4ql
N AT ) ANVAN
A 2l
Fig. 3.2.1.
2
, , D
6 ’ T r\ZZ\HHIHZZ ~
i = Fi 7 E_\ L1 e
SEEEC
== (V) 1al] H EH (W)ra
A 4 5 K&
82 g 2
@] [ z
2



Problem 2.

2ql
=~
|
|
C d‘\%ﬂ}
T |t
| N
|
|
BRS¢ ggm .
y PR S | A
. _ 2q1
N C Rex R_C“-\‘._( 4
= ; 2ql
LR e o
i !
Rk
b L, L L,
. 2ql
4q1?
c 2l 2qic ™
o !
T 2ql E T4ql ' 4ql 4ql T
§ 2ql
= Yl 4| qaqr
y AT
&6(]! 9
Fig. 3.2.3.
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[\
b
e
[\
(NG
bo
./

4 (= ? €3 b
A I 6 /\ TEER
V) ral] (N)[ql]

4

F [ [ 7
-
4 20 4 =)
A - 14
(M) [ ql°]
Fig. 3.2.4.

Problem 3.

Fig. 3.2.5.
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_—
| x, *qxz
q
LY vdela bbbl LRIl
A C ™ D
T.%’ql 9
3/

SegmentA-C 0 <x; <3l
V(xy) = 3ql — qx;

V(x;, =0) =3ql
(x1)?
M(xy) =3ql-x; = q- =

9
M(x, =31) = quz
N(xl) =0

SegmentB-C 0<x,<3l, 0<y,<2l

- 2
]
L 5% g, G
q o - " qx, cosa.
I X, SING. 4
N(x:y2) \QM(xz,yz) -
J AN Ay,
Vix:ys) / . ‘
< OB
X2 Z\S’qlsina
3qlcosa’ |/
3ql

Fig. 3.2.7.
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3 3v13 2 213

cosq = —=——, sing = — = ——
viz. 13 Jiz 13
V(x,,v,) = —3qlcosa + qx,cosa=(—3ql + qxz)%
—9v13
13
V(ix,=3l, y,=21)=0
= X2 _ (x2)?

M(xz,y2) = 3ql-x; —qx; 5 =3ql-x; —q-

2 2

M(XZZO, y2=0)=0

9
M(x, =3I, y, =21 = quz

2V13
N(x3,v,) = —3qlsina + qx,sina = (—3ql + qx,) 3
—6vV13
N(x; =0, y,=0)= 13 ql
N(x2=3l, yZ=2l)=0
Internal forces diagrams:
3
I SO
©)
W) l4ql] o (N [dl]

Problem 4.

ln=r+2s-3t=34+6-3-3=0

2. Reactions (Fig. 3.2.9.):
XMy =0; Rpy-2l—2ql-1—2ql-1—2ql-3l+4ql*> =0 Rp, = 3ql
YXFy=0; Rpy +2ql—2ql— R, =0 R, = 3ql
YFy=0; —Rpx +2ql =0 Rg, = 2ql
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- right frame (Fig. 3.2.10.):

2XMcy=0; Rpy'l—Rpy-4l—2ql-21+N-2l=0 N=§¢H
ZFiyZO; RBy_RCy_ZCIl=O RCyqu
5
Y F,=0; —R.x —Rg, + N =0 Rey = qu
2ql
4ql° 7 q
" ¢ i
f —|F -, ==
2ql1 | s T—
| ]
| | S
| |
| |
| |
D El
—h(|3 — 770: 4
I |
_..} |
I | -
ZL:i : =
=~ |
|
A BIJB‘ |
AN VAN -
R R,
4V [ :’ l ,," l :’ 21 F
Fig. 3.2.9
4qFF 2ql .
——f—— Ree  viiiiids
Tqu ; TRCV Reo l _: 1
\ §
‘ |
| |
L e
m ‘
241 No _EN |
— |
o~ |
:\A B;<_RBX
DAY AN
R Rs,
. l P B 21 ,
Fig. 3.2.10.

2l

2l
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5 2ql
14F Sl Sl q
) c_ 1l ¢ IFER T TR
I — v el
2(1’ \ ql ql ¢ (—
I } ;:i
‘ |
|
| |
'D i
4.‘ %ql %ql_b} x
—b‘ |
_b} %(ll sql |
2q1 D E_ 72 | -
s } N
1
o~ |
: |
|4 2ql
q% :Z‘):i L'
qu[ 3ql
P B R 21 .
Fig. 3.2.11.
{IEN 2
< 3 TP IrmErl 3 =
3 BISIRNIRICIN 3 O
o] o —H —
— — o] 1o
;: 2 2 :i :___ S| ___:
3 2 il i
SELENNN=E
W) 4l + ™ fa
L\ P ARVAN 3_%? 3

1

3 TTO]

\%i«‘)/ 1?5
2q12 Cé/%') 1q1°
M) [q7]

I

T

N
N
% 3

F node

Fig. 3.2.12.
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Problem 5.

q
o CiF _____ AUV
IS «
| C
21 |
|
2ql
~ i’:D
21 :
|
L A
L 41 PR | B |
Fig. 3.2.13.a.
12
! F € Re Re CUITIIIIII
~ E f‘tf—f— i R C
2] \ Ro Re
N 24 }D
~ _"
21 }
\
XT MAQ A RAA
) TR‘” 4 4 3l 31

[ 4l

L . 3l 3l

Fig. 3.2.13.b.
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4%

Lx, y
y 276 Lg%, 45 g%, En¥a
d qx, Sina 4y
N(xoyo) >\M(xﬁ o)
Viwy)

{
9
| Xs a\3qlsina
3qlcosa’—
3q/
Fig. 3.2.13.c.

SegmentB-G 0<x,<3l, 0<y,<?2l

The system of forces in segment B-G is presented in Fig. 3.2.13.c.

3 _ 313 2 2V13
cose =—=——"—, sing = — = ——
vz 13 vi3 13
3v13 3v13
V(xe,¥6) = —3qlcosa + qxgcosa = —3ql 5=+ qxs

V(ixg =0, ys=0)= —9§ql

Vixg =3l y¢=20)=0

M(x61y6) = gql " x6 —M

M(x6=0: y6=0)=0

9
M(x6 =3, y¢ = 2l) =§ qlz

N(x6,ys) = —3qlsina + qxesina = —3ql% + qu%
V13
N(x; =0, y1=0)= —6qu

N(x;=3l, y,=20)=0
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12
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12
\) 12q1° C
\) 2 9 zj
13q1 2ql

I
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\m
13
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I I I
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Fig. 3.2.14.
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3.3. Review problem solutions - trusses

Problem 1.

Fig. 3.3.1.

The degree of static indeterminacy:
n=r+m-2j=4+26-2-15=0

a)

Fig. 3.3.2.

The compound truss shown in Fig. 3.3.1. has been separated into two single truss
(Fig. 3.3.2.). The support reactions have to be first determined for the right truss

(Fig. 3.3.2.a.):

YFR=0 - Rp,+3P=0 - Rp,=-3P

YME=0 - R.-61—4P-31—-3P-2l=0 — R;=3P
YFi=0 - Rpy+R.—4P=0 - Rp, =P
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Then we can determine support reactions for the left truss (Fig. 3.3.2.b.):
YMi=0 — Rp,-6l—P-4l—2P-2l—Rp, 10l=0 - Rp, =3P
YF,=0 - Ry+Rgy,—P—Rp,=0 - Ry=-P
YFi=0 - —Rpy+2P—Rp, =0 — Ry, =5P

To determine forces of members 3-5, 3-4, 2-4 we can use the vertical cutting
plane I-1 shown in Fig. 3.3.2.b. and consider the equilibrium of the left truss segment
(Fig. 3.3.3.a.).

b)
1I-17
S6.5 a—pf 7
'_///SBfti
Bc/___ _‘_RD.r
SsB 8 |
Rpy ¥

Fig. 3.3.3.

Y M, =—Ry-4l—2P-2l—S; c-2l=0 - S; =0
ZM3 S _RA - 4l + 52_4 * Zl = 0 - 52_4 S _ZP
ZFiyZO d RA_P_S3_4:O g 53_4:_2P

To determine forces of members B-6, 6-5 and 8-B we can use the vertical cutting
plane II-1I and consider the right truss segment (Fig. 3.3.3.b.).

, V2
sina = 7

XFy, =0 > —=Sg_¢sina—Rp, =0 — S ¢= —/2P
XMp =0 > —Rpy,-4l+S_5-2l=0 > Sq_5=2P
ZM6 :O i _RDy'ZI_RDx'ZI_SS_B'Zl:O i SS_BZZP
a) b)
-1

i
. B

R Dx
-

R}_)}' l

Fig. 3.3.4.

127



Cutting plane III-III (Fig. 3.3.4.a.)
ZFiy =0 = Sg¢—Rpy=0 - Sg¢=P

ZMS :O_) _RDy'2l+S7_6'2l:0_) 57—6:P
ZM6 =0 - _RDy'Zl_RDx'Zl_SB_B'leo i SS—B = 2P

Cutting plane IV-1V (Fig. 3.3.4.b.)
2V13

13
) 3V13
YFy =0 = =Sio-usinf+Rc=0 - Sjo11 =P

sinf =

ZMll = O d SlO—C = 0

Problem 2.
P
6 7 8 9 19 2P

yl

| I

|

1 2|/ o 3 4 sy . Zx Al

t R2X A‘ T
P

RZy R5
L 31 [ 3/ v 31 L 3l L 3l L
1 7] 7 Al A il
Fig. 3.3.5.

The degree of static indeterminacy:
n=r+m-2j=3+17-2-10 =0

Support reactions (Fig. 3.3.5.) can be determined by using the three global equilibrium
equations for the planar structures.

IMy =0 > —P-31— P-3l+ Ry 91+ 2P-4l=0 - Ry = — =P
SFye =0 —> Ry-2P =0 — Ry = 2P

2
SFy = P+ Ry - P + Rs =0 = Ry=5P
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N2 Nsz Naus
A‘ R Nsz% Nz G_ Ny if; 5 @)

Ni: 1 N3-4
RZ)
__6 Ner 7 Nrs Nrms g Nsg 9 N_&w Now 10 2P
/l Nar\o E;7 ' N.w% - y
Nes Nas N Nso Ns.ao
Fig. 3.3.6.
Joint 1 (Fig. 3 3.6.)
sina = - cosa = >
5 5
SF,y =0 Nygsina+P =0 > Ny_g= — Si’:w( _ zp
5 3 3
ZFix =0 N1_6C05a + N1—2 =0 - N1_2 = —N1_6cosa = ZP . g — ZP

Joint 6 (Fig. 3.3.6.)
EFiy =0 - _N2_6_N1_6Sina =0 g _N2—6+ %P% =0 - N2_6:P

5 3 3
YF, =0 > Ng_y-Ny_gcosa =0 > Ng_,+ 2Pz = 0 — Nop = =3P

Joint 2 (Fig. 3.3.6.)

EFiy = 0 - RZy + N2—6+N2_7Sina = O e d N2_7 = —%P

1
EFL'X = O e d _Nl—Z + N2_3 + R2x+N2_7COS(X = O — N2—3 —_ _§P

Joint 7 (Fig. 3.3.6.)

2
2Fy =0—-> —P-N3_;-Ny_ysina =0—-> N;z_;= ap

5
ZFix = 0 Ed _N6—7 + N7—8_ N2_7COSCZ = 0 e N7—8 = —§P

Joint 3 (Fig. 3.3.6.)

2Fy, =0—-> Njgsina + N3, =0 - N3 g = _18P

1
JF, =0 - —N,_ 3+ N3_gcosa + N;_, = 0 > N;z_, = _gp
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[oint 8 (Fig. 3.3.6.)

11
6

2
2Fixy = 0 > —=N;_g + Ng_g—N3 gcosa =0 = Ngg = ——P
[oint 4 (Fig. 3.3.6.)
5
2Fy, = 0> Nyosina + Ny_g =0 - Nyg = _EP
2Fy = 0> —N3_4, + Ny gcosa + Nyos =0 - Ny5s =0
[oint 9 (Fig. 3.3.6.)
2
EFL = —N4_9Sin0l— N5_9 = O - N5—9 = §P
YF, = —Ng_g- Ny_gcosa + Ng_10 = 0 — Ng_i9 = —2P

Verification:

Joint 10 (Fig. 3.3.6.)
JFy =—=Ng_19- 2P =2P—-2P =0
ZFl' = - N5_10 = 0

[oint 5 (Fig. 3.3.6.)
JF;, =—N4y_5 + Ns_ig9cosa =0 + Ocosa = 0

2 2
EFiy = Rs + Ns_g + N5_jpSina = —aP + aP + Osina = 0

Problem 3.

The degree of static indeterminacyn =r+m—-2j=3+15-2-9=0
Support reactions (Fig. 3.3.7.) can be determined by using the three global equilibrium

equations for the planar structures.

Fig. 3.3.7.

YM; =0 — Ry, -12a+P-16a+4P-3a—P-10a=0- R, =—

3
SFy=0 = Ri+Ry+P-P=0> R =P
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2a  2a  2a y 2a  2a , 2a , 2a , 2a
7 | | A 7 A 7

P=—=-P
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YFiu =0 > Ry —4P =0 - R, =4P

a) b)

Na7

Nas
’Il/
Fig. 3.3.8.
Cutting plane I-I (Fig. 3.3.8.a.)
. 3v13
sina = —=
. 3 V13 V13
ZFiy =0-> R +N, g-sina=0—-> N, g= _E .T: _ 5

ZMZ :0 - _N9_8'3a_R1'4a:O i N9_8:_2P
ZMSZO_) _R1'6a+N2_3'3a:O_) N2_3:3P

Cutting plane II-II (Fig. 3.3.8.b.)
ZM7=0_) R4y'2a+R4x'3a+P'6a_N4__3'3a=0

3
—EP-2a+4P-3a+P-6a=N4_3-3a - N,_3;=05P

16
ZM4:0_) 4P'3a+N7_6'3a+P'4a:O_) N7_6:_?P
YF, 0 Ris, + P+ N [ 0 3P+P+N _3 0
v — - _7 - Slna = - —= Al
Ly 4y 4-7 2 4-7 13
V13
N4__7=TP
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