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Chapter 5 
The efficiency of Wireless Power Transfer 
in periodic systems composed of circular coils 

Jacek Maciej Stankiewicz 
Bialystok University of Technology, Faculty of Electrical Engineering

Abstract: The article presents an analysis of the efficiency of the periodic Wireless 
Power Transfer (WPT) system. In the analysis circular coils were used. Also, 
considerations were given for changeability in the number of turns and the dis-
tance between the transmitting-receiving coils. The influence of variable system 
geometry and the frequency on system efficiency was analysed. The Finite Element 
Method (FEM) with the use of periodic boundary conditions was used for the anal-
ysis. Based on the obtained results, it was verified at which system parameters wire-
less power transfer of the system is possible.

Keywords: wireless power transfer (WPT), numerical analysis, magnetic fields, FEM.

Introduction
The power obtained from the power station in the form of electricity is very costly 
and the transmission efficiency is very low (~30%), because high tension conductors 
due to a high energy loss in a high resistive wire. Also, the power station that is run-
ning on coal, gas or nuclear materials, uses a lot of these resources to make electricity, 
is not cost-effective and has trouble associated with environmental issues (e.g. pol-
lution). Due to infrastructure power disruptions are frequent. The indicated prob-
lems lead to find alternate solutions connected with transmit and distribute power 
(electricity). The other problem is the wires for powering home appliances at e.g. house, 
workplace, schools, because of a reduced range of machines that are prone to failure. 
Also, while changing the battery of any appliance, the circuit interface can be disturbed 
and may stop working. Considering the above, the method of a wireless charging sys-
tem would be beneficial in both economic and social aspects. Many industries are try-
ing to explore the use of electric vehicles or cars in order to the reduce fuel consump-
tion [1, 2, 3]. Also, the WPT system would make a huge impact on the medical field 
(e.g. pacemaker) [4, 5]. The main focus of researchers connected with the WPT system 
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is to develop a wireless powering mechanism useful for the private sector (e.g. medical, 
consumer use, industrial) and also for the public sector (e.g. transfer power on a large 
scale at a low cost and without pollution).

Wireless power transmission (WPT) has become one of the most important 
research points in this century. Portability is the main motivation for WPT as the num-
ber of portable devices is enormously increasing and wired chargers will limit their 
portability.

Several review works [6, 7, 8] briefly explained the WPT theory, system overview 
with circuit structure and applications. However, the progress in the resonant cou-
pled system, including the multi-coil WPT structure [9, 10, 11, 12], effects of couplings 
and frequency splitting on efficiency, as well as human exposure issues [13, 14], has 
not been extensively studied so far.

In the late 20th century, the near-field inductive power transfer (IPT) [15, 16] became 
popular because it attained the charging of portable consumer devices. The IPT sys-
tem can effectively transmit power from a source to a device using the principle 
of EM induction and is also non-radiative. Inductive chargers, such as those commonly 
found in electric toothbrushes, charging pads for cell phone [7], operate on this same 
principle. For the IPT applications of a few kilowatts (kW), like the charging of elec-
tric vehicles, almost 90% of transmission efficiency can be achieved by increasing its 
operating frequency, and over 70% of efficiency is also possible to achieve for low-power 
(maximum 5 W) mobile phone charging. For low-power industrial and domestic appli-
cations, the operating frequency range of the inductive coupled technique is generally 
from 20 kHz to several MHz.

Nowadays, the emerging application and a growing market of portable mobile appli-
ances, remote charging and powering of these portable devices, the demand for contact-
less RFID (Radio-Frequency Identification) for security applications and transportation, 
and power harvesting of battery-free CMOS devices for biomedical engineering – they 
all are playing the major role in the push-forward of the resonant coupled WPT system. 

After the first experiment of a glowing bulb through resonant coils without a bar-
rier and also with a barrier made by MIT (Massachusetts Institute of Technology) 
in 2007, there have been new advances in the resonant coupled system to make it suit-
able for commercial applications [17]. In 2008, Intel explored the resonant coupled 
WPT by using flat coils, which are much easier to fit in mobile devices than the helix 
coils used in [18]. In [19] an advanced contactless approach simultaneous powering 
of multiple receiving devices (e.g. laptops, cell phones) was presented. For some research 
works on resonant coupled WPT, the operating frequency range from 10 kHz to nearly 
200 MHz [20] was used.

In opposition to the traditional 2-coil system [21], the 4-coil wireless power-
ing approach is designed by placing two intermediate multi-turn coils between two 
loop coils. Each loop coil is a form of impedance matching mechanism and acts 
as a non-resonator to exchange energy between the circuits and intermediate coils 
[18]. The works [22, 23] connected with multi-coil linked resonant coupled WPT tech-
nique have raised interest in 4-coil system for better performance and impedance 
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matching, compared to 2-coil system. The advantage of this approach is that the two 
intermediate coils are physically set free from circuits, but the main disadvantage 
is that it requires bigger space than any other transmission structure.

Wireless transmission of electricity to multiple receivers using a single source coil 
has been described and analysed in [24]. The disadvantage of this approach is the fact 
that the resonant frequency of coils splits when two receivers are in close enough prox-
imity, and hence lowers efficiency. More difficulty arises with multiple receivers due 
to the high complexity of the circuit model and a lack of interaction among the coils. 

Resonators form an array of coils as a domino [9], and linear resonator arrays [10] 
are considered, where in the intermediate space between the transmitter and the receiver 
energy transfer is assisted using several resonators. However, a detailed analysis was per-
formed for a series configuration of resonators, while parallel-series topology of planar 
coils, acting as a group of energy transmitters and receivers, are still not fully developed.

The power transmission efficiency of the WPT declines at any coupling greater 
or lesser than its critical value. Therefore, a system to maintain high efficiency with-
out shifting the resonant frequency at coupling distance variation is required. Several 
approaches, e.g. like optimum frequency adjustment [25, 26], coupling manipula-
tion [27], adaptive matching using multi-loop coils [28] and LC circuits [29], adjust-
ing resonant parameters [30], and use of antiparallel resonant loop [31], have been 
discussed to deliver power at improved efficiency in the resonant coupled system. 
Some of the above articles also presented the effect of axial and angular misalignment 
of the coil, which is the major issue in WPT implementation for portable devices, such 
as electric vehicle charging [32].

Energy supply or charging of many devices located in close range to each other 
may be simplified using WPT systems as a grid of periodically arranged coils, which 
form surfaces for transmitting or receiving the energy. This solution increases den-
sity of transferred power and also enables simultaneous powering (using single power 
source) of many devices (e.g. for charging many electric cars in one parking). The pro-
posed solutions can be used to power either one or multiple independent loads and, 
in some cases, replace conventional IPT systems. The developed periodic WPT sys-
tem allows for the simultaneous supply/charging of many low-power receivers, such 
as mobile devices or sensors repeatedly distributed over hard-to-reach areas.

The article presents a wireless charging system with periodically arranged planar 
coils. The proposed analysis of the unit cell with periodic boundary conditions does 
not require full 3D model with many coils [33], where the number of degrees of free-
dom is huge. A simplified model in the form of the well-known T-type equivalent cir-
cuit is an alternative for more extensive matrix formulation [9, 10, 34], where a large 
coefficient matrix with lumped parameters has to be known. The main purpose of this 
work is to introduce and study the model, which can be applied to analyze power trans-
fer conditions in the discussed systems. 

The article presents a system of periodically arranged transceivers and receivers 
coils. This proposed system could be used to load mobile devices as the wireless power 
transfer system. Numerical approach reduces the size and complexity of typically 
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utilized models. By the proposed appropriate selection of load resistance, it was possible 
to determine the maximum efficiency of the WPT system. Calculations of the exem-
plary periodic WPT system were performed over a frequency range from 0.1 MHz 
to 1 MHz. The analysis of the influence of the number of turns and the distance between 
the transmitting and receiving coils on the efficiency of the system was performed.

Proposed periodic model 
of the Wireless Power Transfer System (WPT) 
A system consisting of a plane of transmitting coils and a plane of receiving coils 
between which energy was transmitted was considered (Fig. 5.1). 

WPT cell

receiving coiltransmitting coil

FIGURE 5.1. A three-dimensional view on the WPT system
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The WPT cell presented in Fig. 5.1 has external dimensions d × d. The transmitting 
and receiving coils are placed at a distance (h). The turns are placed on a plastic car-
cass in which the compensating capacitor connected in series with the coil is located. 
The three-dimensional distribution of WPT cells leads to the creation of a periodic 
network, which includes transmitting and receiving surfaces. The WPT cell con-
sists of a transmitter-receiver pair constituting an arrangement of identical coils 
with a radius r and the number of turns n (Fig. 5.2).

y

x d
drr

compensating capacitor

FIGURE 5.2. One circular coil used in the proposed WPT system

The transmitting surface is powered so that each transmitter is connected 
in parallel with a sinusoidal voltage source with the effective value U. The coils cre-
ating the receiving surface are connected directly to the load.

The presented system gives an increase in the density of transmitted power 
in the area between the receiving and the transmitting surface. The article pre-
sents the WPT system, in which it is possible to power many independent receivers, 
where a set or each WPT cells is assigned a separate load. Each receiver is connected 
to the load Z.

Numerical analysis of the WPT system
In the analysis of the WPT system, the FEM method was used. The accuracy 
of the solution depends on the size of the model, e.g. the number of degrees of free-
dom (NDOF). A greater number of degrees of freedom allows for obtaining a greater 
accuracy of the solution. Unfortunately, it causes longer calculation time.

The numerical approach to the analysis of a system composed of many WPT 
cells requires taking into account: coil geometry, number of WPT cells and elements 
of the electrical circuit connected to each coil. The coils are wound from several 
dozen turns, which are made of ultra-thin wires with a diameter (w) and insulated 
from each other by an electrical insulator of thickness (i). A compensating capacitor 
can be modelled as a lumped element with capacity (C), attached to each coil.
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The WPT system was modelled with periodic boundary conditions (PBC) [35, 36, 37]. 
This approach allows for simplifying model to a single WPT cell containing a pair 
of transmitting and receiving coils (Fig. 5.3). The perfectly matched layer (PML) 
is a place at the top and bottom of the model to imitate infinite dielectric background.

Each transmitting coil is connected to a voltage source with an effective value (U) 
and frequency (f) that forces the transmitter current (Itr) to flow. In the receiving coil 
the source is replaced by a linear load (Z), which conducts the induced current (Ire).

z

x

y

PML layer

PML layer

d

h

transmitting coil

receiving coil

FIGURE 5.3. Numerical model of the periodic WPT system

The issue of energy transport in the presented WPT model can be solved using 
magnetic vector potential in the form: 

 A A A A= [ ]x y z .  (5.1)

Also was used a description of magnetic phenomena in the frequency domain 
(Helmholtz equation):

 �� ��� �� ��µ ωσ0
1 A A Jj ext , (5.2)

where: 
μ0 – vacuum magnetic permeability [H/m], 
ω – pulsation [rad/s], 
σ – conductivity [S/m], 
Jext – external current density vector [A/m2]. 
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Periodicity conditions on four side surfaces are given in the form of magnetic 
isolation:

 n A� � 0 , (5.3)

where n  =  [1x 1y 1z] is a normal vector to a surface. 

The voltage source U with frequency f determines the value of Jext, and taking into 
account the equation (3) allows to solve the relationship (2) and determine the spatial 
distribution of magnetic vector potential A(x,y,z). For this purpose, the FEM method 
can be used. The compensating capacitor capacity can be determined, e.g. based 
on parametric analysis of the system at different capacitance values (C). In the case 
when Im[It] ≈ 0, it is assumed that the system has a resonance state and the selected 
C is the sought capacity.

Assumption to the analysis
The WPT system was built of identical circular coils. Coil sizes r  =  25 mm 
and a different number of turns n Î {90, 100} and the distance hr Î {12.5, 25} were 
analysed. Tab. 1 presents parameters of the wire and other values used in the analysis.

TABLE 5.1. Parameters used in the analysis
Parameter Symbol Value

Diameter of the wire w 200 µm
Thickness of wire insulation i 5 µm

Conductivity of the wire σ 5.6·107 S/m
Voltage source U 1 V

Frequency domain fmin ¸ fmax 100 ¸ 1000 kHz

On the basis of the obtained results for several exemplary periodic WPT systems, 
the correctness of the proposed numerical model was verified by comparing the active 
power of the receiver:

 P Z Io re=
2

, (5.4)

where: Ire is a current flowing through the receiving coil. Transmitter power is rep-
resented by:

 P UIz tr= , (5.5)

where: Itr is a current flowing through the transmitting coil. Using equations (4) and (5), 
the power transfer efficiency was described by:
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The results were based on the correct selection of Ze (optimal load impedance) 
for maximum power transfer efficiency [11]:

 π
 

Z R fMe c tr= + ( )2 22  , (5.7)

where: 
Mtr is mutual inductance,
Rc is resistance of an inductor. 

Calculation results
The numerical model (Fig. 5.3) was created in the Comsol Multiphysics program, using 
boundary conditions (PML and PBC), and then solved using the Finite Element 
Method. In order to determine the maximum efficiency transmitted to the receiver, 
the values of load impedance were calculated taking into account the number of turns 
and the distance between the coils; and the transmitter power (Pz) (Figs. 5.4, 5.7), 
receiver power (Po) (Figs. 5.5, 5.8), power transfer efficiency (η) (Figs. 5.6, 5.9) were 
presented on this basis.

0

0 02.

0 04.

0 06.

0 08.

0 10.

0 12.

0 14.

100 200 300 400 500 600 700 800 900 1000

f [kHz]

P
z
[W

]

h = 12,5 mm (FM) h = 25 mm (FM)

FIGURE 5.4. Results of transmitter power (Pz) dependent on the distance at number of turns 
(n = 90)



57

0

6

12

18

24

30

36

P
O

[m
W

]

100 200 300 400 500 600 700 800 900 1000

f [kHz]

h = 12,5 mm (FM) h = 25 mm (FM)

FIGURE 5.5. Results of receiver power (Po) dependent on the distance at number of turns (n = 90)
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FIGURE 5.6. Results of power transfer efficiency dependent on the distance at number of turns 
(n = 90)

The transmitter power Pz decreases over the entire frequency range, regardless 
of the number of turns n and the distance h (Figs. 5.4, 5.7). The power Pz is higher 
at the distance h = r = 25 mm than at the distance h = r/2 = 12.5 mm.
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FIGURE 5.7. Results of transmitter power (Pz) dependent on the distance at number of turns 
(n = 100)
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FIGURE 5.9. Results of power transfer efficiency dependent on the distance at number of turns 
(n = 100)

At the distance h = 12.5 mm the receiver power Po decreases with increasing 
frequency. At the distance h = 25 mm the power Po increases first, and decreases 
with increasing frequency. By increasing the number of turns, the receiver power 
will fall. The shape of the receiver power characteristics for both numbers of turns 
is very similar. As the frequency increases, the efficiency of the system increases 
and reaches almost 95%. Doubling the distance between the coils reduces the effi-
ciency by up to 50%.

Conclusions
The article presents the numerical approach of solving models of periodic WPT. 
The maximum power transfer efficiency in periodic WPT systems was analyzed based 
on exemplary structures with many magnetic couplings between constituent induc-
tors. A different number of turns and distances were taken into account.

The numerical model of the WPT system is an alternative to experimental research. 
It allows for quick calculations of the efficiency of the WPT system with different 
geometry of coils. The proposed numerical model makes it possible to estimate 
the influence of the construction of the coil system and the coil itself on the efficiency 
of power transmission. By regulating the number of turns and increasing the frequency 
of the current, it was possible to obtain high power transmission for the loads supplied 
using the proposed system, without the use of intermediate coils. By proper selection 
of load impedance, it was possible to determine the power transferred to the receiver 
and the corresponding efficiency.
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Doubling the distance between the coils reduces efficiency by up to 50%. However, 
increasing the number of turns by 10 results in an increase in the efficiency of the sys-
tem by almost 5%.

Streszczenie: W artykule przedstawiono analizę wydajności układu periodycznego 
WPT (Wireless Power Transfer). Do analizy wykorzystano cewki okrągłe. Również 
uwzględniono zmienność liczby zwojów oraz odległość między cewkami (nadawczą 
a odbiorczą). Analizowano wpływ zmiennej geometrii układu oraz częstotliwości 
na sprawność układu. Do analizy wykorzystano metodę elementów skończonych 
(FEM) z zastosowaniem periodycznych warunków brzegowych. Na podstawie 
uzyskanych wyników sprawdzono, przy jakich parametrach układu możliwy jest 
bezprzewodowy transfer energii. (Sprawność bezprzewodowego przesyłu energii 
w periodycznych układach złożonych z cewek okrągłych).

Słowa kluczowe: bezprzewodowa transmisja energii (WPT), numeryczna analiza, 
pole magnetyczne, FEM.
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