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Wiktor JAKOWLUK1 

7. FRACTIONAL-ORDER LTI  

SYSTEM IDENTIFICATION USING  

INTEGER-ORDER STATE-SPACE MODEL 

The optimal input signal design is a technique of generating an informative excitation 

signal to estimate the model parameters with maximum accuracy. In the paper, a novel 

optimal input formulation and a numerical scheme for fractional-order LTI system 

identification are presented. The Oustaloup recursive approximation (ORA) method is used 

to determine the fractional-order differentiation in an integer-order state-space form. 

Then, the proposed method is used to obtain an optimal input signal for fractional-order 

system parameter estimation from the interval 0.5 ≤ 𝛼 ≤ 2.0. The methodology presented 

in this paper has been verified using numerical examples, and the experiment results have 

been discussed. 

7.1.  INTRODUCTION 

Fractional-order calculus has received a lot of attention in different scientific fields, 

including precise system modeling and automatic control problems [1, 2]. It has been 

shown that fractional-order models guarantee a more exact system dynamics depiction 

because real-life processes appear to be of non-integer order [3, 4]. The fractional-order 

calculus is the generalization of integration and differentiation where the power is of 

fractional-order [5]. Many reports have been devoted to study the accuracy of the non-

integer calculus in application to different domains, e.g.: bioengineering [6], physics [7, 8], 

chaos theory [9], control systems [10, 11] and fractional signal processing [12, 13]. 

It is clear that the rise of interest in the fractional-order calculus domain has 

a relationship with the increasing availability of high-performance computational 

packages. Adaptation of the methods of the fractional-order estimation to real-life 

industrial problems should bring about quality improvement and cost minimization. 

Moreover, fractional-order approximation methods used for automatic control purposes 
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results in the improvement of control loops. Fractional-order calculus is often applied to 

robotics and automation for the system identification and automatic control purposes [2]. 

The control performance evaluation has a great impact on the economic condition of the 

real-life processes. In contrast to the fractional-order controllers, a conventional PID 

controller has been shown to be unsatisfactory for industrial applications due to its limited 

tuning flexibility [14]. 

The optimal excitation signal design task concerns the optimal control methods for 

linear and nonlinear integer-order systems. The main goal of this paper is to introduce 

a novel optimal input design formulation and the numerical scheme for fractional-order 

system identification. The methodology is presented using the LTI inertial model. 

The Oustaloup recursive approximation (ORA) method has been used to exact 

approximation of the non-integer order operator, which is then transformed into a zero-pole 

transfer function [15]. The estimation results are then used for a transfer function 

conversion into an integer-order state-space form. The problem appears for fractional-

orders (𝛼 > 1) during the transfer function conversion into the state-space form, when the 

order of the numerator is equal to the order of the denominator. This issue has been solved 

by augmenting a fractional-order system dynamics with one extra state. An optimal input 

design task for non-integer order linear time-invariant system identification has been 

verified by numerical examples in an order range from the interval (0.5, 2.0). The problems 

of the optimal input design, in the context of the integer-order system identification, are 

considered in earlier works of the author [16, 17, 18]. 

7.2.  FRACTIONAL-ORDER CONTROL PROBLEM 

The problem of the fractional-order calculus is a generalization of integral and 

differential operators to a non-integer operator 𝐷𝑎 𝑡
𝛼. The continuous operator of the 

fractional-order 𝛼 is given by 

𝐷𝑎 𝑡
𝛼 =

{
 
 

 
 

𝑑𝛼

𝑑𝑡𝛼
ℜ(𝛼) > 0,

1 ℜ(𝛼) = 0,

∫(𝑑𝜏)−𝛼
𝑡

𝑎

ℜ(𝛼) < 0,

 (7.1) 

where: 𝑎, 𝑡 - denote the limits of the process and 𝛼 is the set for all complex numbers. 

The fractional-order calculus is the special case of a classical integer-order differential 

equations task. Linear fractional-order continuous-time SISO dynamic system is 

comensature-order if all powers of a derivative are integer multiples of the order 𝑞 in such 

a way that 𝛼𝑘, 𝛽𝑘 =  𝑘𝑞, 𝑞  𝑅+, and is given by the following equation [1, 2] 

∑𝑎𝑘𝐷𝑡
𝛼𝑖𝑦(𝑡)

𝑛

𝑘=0

=∑𝑏𝑘𝐷𝑡
𝛽𝑖𝑢(𝑡)

𝑚

𝑘=0

, (7.2) 
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where: 𝑎𝑘, 𝑏𝑘 are model constant coefficients. The discrete-time formulation for different 

orders can be discovered from [19]. The LTI model is of rational-order if 𝑞 = 𝑟−1, and 

𝑞𝑅+. Using the Laplace transformation to equation (2), and applying zero initial 

conditions to the input-output specification of the fractional-order model, the transfer 

function formulation can be written as 

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=
𝑏𝑚𝑠

𝛽𝑚 + 𝑏𝑚−1𝑠
𝛽𝑚−1 +⋯+ 𝑏0𝑠

𝛽0

𝑎𝑛𝑠
𝛼𝑛 + 𝑎𝑛−1𝑠

𝛼𝑛−1 +⋯+ 𝑎0𝑠
𝛼0
. (7.3) 

The continuous-time system of commensurate-order 𝑞 can be modified to obtain the 

pseudo-rational transfer function formula 𝐻(𝜆) in the form 

𝐻(𝜆) =
∑ 𝑏𝑘𝜆

𝑘𝑚
𝑘=0

∑ 𝑎𝑘𝜆
𝑘𝑛

𝑘=0

, (7.4) 

where 𝜆 = 𝑠𝑞. On the basis of this conception, pseudo-rational description of the fractional-

order linear time-invariant model can be formulated by a state-space equation given by 

𝐷0 𝑡
𝛼𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡). 

(7.5) 

For the model parameters estimation purposes, the difference equation representing 

input-output dynamics of the system is more useful than the state-space formulation. 

However, the state-space model description provides multiple input and multiple output 

(MIMO) fractional-order systems representation. 

7.3.  FRACTIONAL-ORDER OPERATOR APPROXYMATION 

The problem of approximating the fractional-order system by an integer-order one has 

been presented in [1]. The Oustaloup recursive approximation (ORA) method, which has 

a very good fitting to the fractional-order transfer functions is widely used in practice. 

We focus our attention on the Oustaloup recursive approximation algorithm during the 

experiments. Choosing the appropriate frequency fitting range, the problem of a fractional 

differentiator or a fractional integrator estimation can be solved using following formulas 

𝑠𝛼 ≈ 𝐾∏
𝑠 +𝜔𝑘

′

𝑠 + 𝜔𝑘
,

𝑁

𝑘=1

 (7.6) 

where poles, zeros and a gain of the filter can be obtained from 

𝜔𝑘
′ = 𝜔𝑏 ⋅ 𝜔𝑢

(2𝑘−1−𝛼) 𝑁⁄ , (7.7) 
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𝜔𝑘 = 𝜔𝑏 ⋅ 𝜔𝑢
(2𝑘−1+𝛼) 𝑁⁄

, (7.8) 

𝐾 = 𝜔ℎ
𝛼 , (7.9) 

𝜔𝑢 = √
𝜔ℎ
𝜔𝑏
. (7.10) 

Where 𝑁 is the order of the approximation, and 𝜔𝑏, 𝜔ℎ are the selected frequency fitting 

range. The order of the approximation is 2𝑁 + 1, and considering higher orders of 𝑁 the 

approximation results should be more accurate.  

The Oustaloup filter provides an exact fitting to a fractional operator in a chosen 

frequency interval, and a orders range [4]. Thus, for the fractional-order operators, where 

𝛼 ≥ 1 one should separate a fractional order using the following formula 

𝑠𝛼 = 𝑠𝑛𝑠𝛾 , (7.11) 

where 𝑛 = 𝛼–𝛾 is the integer part of 𝛼 and 𝑠𝛾 is solved according to (7.6) using Oustaloup 

recursive approximation. The transfer function obtained from ORA filter has been used to 

transform the external model form into the integer-order internal state-space representation. 

In general, the 𝑛-th order transfer function obtained from the pole-zero formula is as 

follows 

𝐻(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=
𝑏0𝑠

𝑛 + 𝑏1𝑠
𝑛−1 +⋯+ 𝑏𝑛−1𝑠 + 𝑏𝑛

𝑠𝑛 + 𝑎1𝑠
𝑛−1 +⋯+ 𝑎𝑛−1𝑠 + 𝑎𝑛

, (7.12) 

where 𝑎 and 𝑏 are the factors of the polynomials in descending powers of 𝑠, and 𝑎0 = 1. 

Then, it is possible to determine an optimal input signal for the fractional-order system 

identification using integer state-space equation [15]. 

Since the choice of the state coefficients can differ, the transfer function representation 

can also be different. Referring to publication [20], the fractional order operator 𝐷𝑡0 𝑡
𝛼 has 

the following form 

𝐷𝑡0 𝑡
𝛼𝑥(𝑡) ≈ {

�̇� = 𝐴𝐹𝑧 + 𝐵𝐹𝑢
𝑥 = 𝐶𝐹𝑧 + 𝐷𝐹𝑢

}, (7.13) 

where the corresponding matrices are as follows 

𝐴𝐹 =

[
 
 
 
 
−𝑎𝑛−1 −𝑎𝑛−2 ⋯ −𝑎1 −𝑎0
1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮ ⋯ ⋮ ⋮
0 0 ⋯ 1 0 ]

 
 
 
 

, (7.14) 

𝐵𝐹 = [1 0 0 … 0]𝑇 , (7.15) 
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𝐶𝐹 = [
(𝑏𝑛 − 𝑎𝑛𝑏0)(𝑏𝑛−1 − 𝑎𝑛−1𝑏0)⋯

⋯(𝑏2 − 𝑎2𝑏0)(𝑏1 − 𝑎1𝑏0)
], (7.16) 

𝐷𝐹 = 𝑏0 = 𝑑. (7.17) 

To solve the problem of the optimal input design for fractional-order model 

identification, there is a need to approximate the fractional-order operator, and transform 

this problem, to be solved using one of the available software packages for optimal control. 

7.4.  OPTIMAL INPUT GENERATION PROBLEM 

To illustrate the efficacy of this technique to fractional-order system parameter estimation, 

using the ORA filter, we have selected Riots_95 toolbox, which has been developed to 

solve the optimal control problems [21]. The optimal excitation signal design for fractional-

order system identification that minimizes objective function is as follows 

𝐽 = 𝑔 (𝐶𝐹𝑧(𝑡0) + 𝐷𝐹𝑢(𝑡0), 𝐶𝐹𝑧(𝑡𝑓) + 𝐷𝐹𝑢(𝑡𝑓)) 

+ ∫ 𝑙(𝐶𝐹𝑧 + 𝐷𝐹𝑢, 𝑢, 𝑡)𝑑𝑡

𝑡𝑓

𝑡0

, 
(7.18) 

subject to the system dynamics 

�̇�(𝑡) = 𝐴𝐹𝑧 + 𝐵𝐹(ℎ(𝐶𝐹𝑧 + 𝐷𝐹𝑢, 𝑢, 𝑡)), (7.19) 

with respect to the initial conditions 

𝑧(𝑡0) =
𝑥𝑡0𝑇

𝐶𝐹𝑇
. (7.20) 

The real state-space variable 𝑥(𝑡) formulation is given by 

𝑥(𝑡) = 𝐶𝐹𝑧(𝑡) + 𝐷𝐹𝑢(𝑡), (7.21) 

where 𝑥 is the state-space vector, 𝑡[𝑡0, 𝑡𝑓] is time duration. The potential set of constraints 

is as follows 

𝑢(𝑡) ∈ ⟨𝑢𝑚𝑖𝑛(𝑡), 𝑢𝑚𝑎𝑥(𝑡)⟩, (7.22) 

(𝐶𝐹𝑧(𝑡0) + 𝐷𝐹𝑢(𝑡0)) ∈ ⟨𝑢𝑚𝑖𝑛(𝑡0), 𝑢𝑚𝑎𝑥(𝑡0)⟩. (7.23) 

The convergence of the optimization is related with the vector 𝑇 selection. Regarding to 

vector 𝐵𝐹, which is described by the matrix (7.15), vector 𝑇 is given by 

𝑇 = [1 0 0 … 0]𝑇 . (7.24) 
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The angular pulsation for the Oustaloup approximation has been selected as [0.01, 100] 

rad/s. The selection of the frequency range depends on the discretization of the control 

duration corresponding to the software algorithm for solving OCP problems, a wide fitting 

range increases the computational effort. The final time has been chosen as 𝑡𝑓 = 1.5 𝑠. 

The selection of the Oustaloup filter order 𝑁 has been based on the below rule 

𝑁 = 𝑙𝑜𝑔(𝜔ℎ) − 𝑙𝑜𝑔(𝜔𝑏). (7.25) 

The frequency range selection for the ORA method is a very important step because 

a narrow bandwidth results in a lack of the fit. 

7.5.  FRACTIONAL ORDER SYSTEM IDENTIFICATION 

The problem of an optimal input design for the fractional-order LTI system 

identification is presented in this chapter. The optimal control method for fractional-order 

model approximation in the state-space form has been presented in [20]. The main purpose 

of this method is to represent the optimal input design problem using the Lagrange form 

with the chosen set of constraints. To verify the suitability of this method to the system 

parameter identification purposes, a fractional inertial model has been selected 

𝐺(𝑠) =
𝑘

𝑠𝛼𝑇 + 1
, 0.5 ≤ 𝛼 ≤ 2.0, (7.26) 

where 𝑘 = 1 is the gain of the model, and 𝑇 = 𝑎1/𝑎0 = 1 is the time constant. 

The fractional -order LTI system should be presented by the state-space equation given by 

𝐷0 𝑡
𝛼𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑣(𝑡), 
(7.27) 

where 𝑢(𝑡), 𝑦(𝑡) are the input and output vectors, 𝑥(𝑡) is the state vector, 𝐴, 𝐵, 𝐶, 𝐷 are 

the state-space matrices describing the system dynamics, and 𝑣(𝑡) is a stationary random 

Gaussian noise process. The main objective of the system parameter identification is to 

maximize the sensitivity of the state variable to the unknown model parameter [22]. 

The Cramer-Rao definition provides a lower bound for the variance of an unbiased 

parameter to be identified. Applying the above definition to input design purposes, one can 

obtain the parameter estimate which is lowered, for optimal inputs 

𝑐𝑜𝑣(𝐴, 𝐵, 𝐶, 𝐷) ≥ 𝑀−𝟏. (7.28) 

The optimal input signal problem for fractional-order inertial system identification is 

verified in this paper. According to the Cramer-Rao rule, the sensitivity of the state variable 

𝑥(𝑡, 𝑑) to the parameter 𝑑 (i.e. the gain of the open-loop system) has been maximized. 

The objective function formulated based on [22] is as follows 



81 

𝐽𝛼(𝑢) = ∫ 𝑥𝑑
2(𝑡, 𝑑)

𝑡𝑓

0

𝑑𝑡, (7.29) 

the sensitivity of the state variable is 

𝑥𝑑(𝑡, 𝑑) =
𝜕𝑥(𝑡, 𝑑)

𝜕𝑑
, (7.30) 

subject to input energy 

∫ 𝑢(𝑡)𝑇𝑢(𝑡)

𝑡𝑓

0

𝑑𝑡 ≤ 𝐸. (7.31) 

The presented method is appropriate only for models with the fractional order values  

𝛼 ≤ 1.0. For the fractional order values 𝛼 from the interval (1.0, 2.0), it is necessary to 

extend the state-space equations by one extra state. The problem formulation for solving 

this task would be presented in the further part of the current section. In general case, 

an optimal input signal design to the fractional-order inertial LTI system identification is 

formulated by the state-space model 

𝐷0 𝑡
𝛼𝑥 = 𝐴𝑥 + 𝐵𝑢, 
𝑦 = 𝐶𝑥, 

(7.32) 

where: 𝐴 = −1, 𝐵 = 1, and 𝐶 = 1 are model parameters (according to (7.32)), with the 

initial condition 

𝑥(0) = 5. (7.33) 

The reformulated performance criterion to be maximized has the following form 

𝐽𝛼(𝑢) = ∫(𝐶𝐹𝑥𝑑(𝑡) + 𝑢)
2𝑑𝑡,

𝑡𝑓

0

 (7.34) 

with respect to the constraints 

−1 ≤ 𝑢(𝑡) ≤ 1, 𝑡 ∈ [0, 𝑡𝑓], 

∫(𝑡𝑓 − 𝑡)
2(1−𝛼)

𝑡𝑓

0

𝑢(𝑡)𝑇𝑢(𝑡)𝑑𝑡 ≤ 1, 𝑡 ∈ [0, 𝑡𝑓]. 
(7.35) 

The controllability Gramian [13] of fractional order 𝛼 is used to the energy cost 

minimization purposes. The term (𝑡𝑓– 𝑡)
2(1−𝛼) under the integral (7.35) is designated to 
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neutralize the singularity at 𝑡 = 𝑡𝑓. This component is also used to ensure the convergence 

of the integral. The reformulated system dynamics has the following form 

�̇� = 𝐴𝐹𝑧 + 𝐵𝐹(−(𝐶𝐹𝑧 + 𝐷𝐹𝑢) + 𝑢), (7.36) 

with the initial conditions 

𝑧(0) = [5 0 ⋯ 0]𝑇 . (7.37) 

The equation (7.32) can be reformulated to solve the fractional-order model identification 

for non-integer orders 𝛼 > 1.0. For this purpose, the system dynamics should be extended 

by another state variable. The cost function (7.34) is maximized for order values from the 

interval (1.0 < 𝛼 ≤ 2.0) considering the following dynamics 

�̇�1 = 𝐶𝐹𝑥2 +𝐷𝐹𝑢, 

𝐷0 𝑡
𝛽
𝑥2 = 𝐴𝐹𝑥2 + 𝐵𝐹(−(𝐶𝐹𝑥2 + 𝐷𝐹𝑢) + 𝑢), 

(7.38) 

it was assumed that 𝛽 = 𝛼–1, and the initial conditions are: 𝑥1(0) = 5, 𝑥2(0) = 0. 

The previous problem can be presented by the state equation given below 

�̇� = 𝐶𝐹𝑧 + 𝐷𝐹𝑢, 
�̇� = 𝐴𝐹𝑧 + 𝐵𝐹(−(𝐶𝐹𝑧 + 𝐷𝐹𝑢) + 𝑢), 

(7.39) 

subject to the constraints, and the initial conditions described by equations (7.35), and 

(7.37). The fractional-order optimal input design problem is to be solved using the Runge-

Kutta method. 

7.6.  EXPERIMENTAL RESULTS 

The frequencies for the Oustaloup method has been chosen from the interval  

[10−2, 102] rad/s. The order of the ORA filter has been obtained using equation (7.25) with 

𝑁 = 4. The Oustaloup filter frequencies have been chosen to fit in with the discretization 

of the integration method used by Riots_95 [21]. This toolbox should be included in Matlab 

kit as a separate library, and allows to solve optimal control problems containing fixed, and 

the free final time tasks. 

The optimal input design problem for fractional LTI system identification is then 

generated for the arbitrarily selected parameters (7.32) 𝐴 = −1, 𝐵 = 1, 𝐶 = 1, and the 

chosen time period 𝑡 = [0, 1.0] seconds, using the sequential quadratic programming 

(SQP) algorithm. The final extended period of the time 𝑡𝑓 would certainly cause notable 

computational effort. The fractional-order model initial conditions have been selected 

according to (7.37), and the initial condition of the input signal has been fixed on  

𝑢(0) = 1. The optimal input signal trajectory 𝑢(𝑡) has been limited to the range of motion 

[−1,+1] in order to prevent sudden changes of the input signal. The optimal input signals 

were obtained using the 4th order Runge-Kutta method with grid interval of 0.01 sec. 
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The optimal input signals and the state variables to fractional-order inertial LTI system 

generated for different orders of the state-space model (7.32) (i.e. 0.5 ≤ 𝛼 ≤ 1.0) are 

shown in Fig. 7.1. As seen, the input signals are considerably different, while the value of 

the order of 𝛼 decreases. For the state-space model orders of 𝛼 ≤ 1.0, the input signal 

transition reduces its duration, while the control signal obtained for 𝛼 = 0.5 is substantially 

a step input signal (i.e. yellow solid line). 

 

  

Fig. 7.1. The optimal excitation signal 𝑢(𝑡) and the state variable 𝑧(𝑡) to the fractional inertial system  

as function of time 𝑡 for orders from the interval 0.5 ≤ 𝛼 ≤ 1.0 

 

  

  

Fig. 7.2. The optimal input signals 𝑢(𝑡) to the fractional-order inertial system  

as function of time 𝑡 for orders from the interval 1.0 < 𝛼 ≤ 2.0 
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The plot shown on the right side of Fig. 7.1 presents the reformulated state variables 𝑧(𝑡) 

to the fractional-order inertial system as a function of time for various orders of 𝛼 from the 

interval 0.5 ≤ 𝛼 ≤ 1.0. As it has already been indicated, the sensitivity of the state variable 

𝑥(𝑡, 𝑑) to the parameter 𝑑 (i.e. the gain of the open-loop system) has been maximized. 

The parameter 𝑑 is the gain of the non-integer model (7.27) after the Oustaloup 

approximation operation. The imprecise estimation of the gain can lead to instability of the 

open-loop system especially using rapidly changing input signals. The examples of the 

optimal inputs to the fractional-order inertial system identification as a function of time for 

different orders of 𝛼 from the interval 1.5 ≤ 𝛼 ≤ 2.0 are shown in Fig. 7.2. The fractional-

order system identification for α ≥ 1.0 requires the extension of the state-space equation by 

an additional state subject to (7.39). It can be noted that increasing the value of the system 

order, the input signal is characterized by the increased number of the oscillations. 
 

  
Fig. 7.3. The state-space variable 𝑧(𝑡) to the fractional-order inertial system as function of time 𝑡,  

and the step responses comparison for different order values  

 

As it has been shown in Fig. 7.3, since increasing the order of the fractional system from 

the interval of 1.5 ≤ 𝛼 ≤ 2.0, the model's response starts to become oscillatory. The left 

panel of Fig. 7.3 shows the waveforms of the state variable 𝑧(𝑡) of the fractional-order 

inertial system as a function of the time. The comparison of the step responses to the inertial 

system using various values of 𝛼 is shown on the right panel of the Fig. 7.3. It can be 

noticed that the step responses for orders 𝛼 ≤ 1 are aperiodic, however conventional first-

order inertial system step response can be observed for 𝛼 = 1. The step responses have 

oscillatory form for the fractional system orders 𝛼 ≥ 1. Finally, it should be stated that 

presented methodology cannot be used for fractional-order systems, where 𝛼 > 1. 

This inconvenience is related to the fact that the approximated transfer function numerator 

has the higher order than the order of the denominator. Consequently, it is impossible to 

convert a zero-pole transfer function to the state-space form. This problem can be solved 

by augmenting the fractional-order system dynamics with one extra state. 
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7.7.  CONCLUSIONS 

In this paper, we have proposed a novel optimal input design formulation for the 

fractional-order system identification. The methodology for finding an optimal input 

solution is verified using the numerical examples. The model design is based on accurate 

Oustaloup recursive approximation process and has been then used for the fractional-order 

operator estimation in the integer-order transfer function form. If the transfer function 

numerator order is equal to the denominator order, the conversion of a transfer function to 

a state-space form is allowed. The technique presented in this paper enables the solution of 

the optimal input signal for fractional-order system identification. The problem solution is 

based on the state variable sensitivity to the fractional-order system parameter 𝑑 (i.e. the 

gain of the state-space system) minimization, subject to a set of constraints imposed on 

input signal. Increasing the gain of the system makes the system underdamped, and in an 

extreme case, leads to instability of the open-loop system. Consequently, a precise gain 

value approximation is a significant task during the fractional-order system identification. 

It has been noticed that the most significant loss in the objective function value has been 

obtained for 𝛼 value from 0.9 to 1.0. This loss of the performance is the consequence of 

the fractional-order differentiator conversion into the integer-order form. 

The most significant step has been to reformulate our optimal input design problem, 

represented by the Lagrange formulation with the set of constraints, into a twin fractional-

order input design. Then it is possible to solve the optimal input signal problem using one 

of the available toolboxes for solving optimal control problems. The numerical simulations 

confirm that the result obtained for the fractional-order case study (i.e. for 𝛼 = 1) is the 

same as the one received from the integer-order input design problem. The numerical 

examples also confirm that for fractional order values 𝛼 > 1, there is need to augment the 

state-space equations by one extra state. Moreover, the selection of appropriate frequencies 

for the Oustaloup recursive technique is also a very important design step. 
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