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Chapter 8 
The impact of electric energy receivers used 
in modern households on energy efficiency 
in the low-voltage network

Kacper Szadkowski, Grzegorz Hołdyński 
Bialystok University of Technology, Faculty of Electrical Engineering

This paper deals with the issues of power losses in low-voltage supply networks 
caused by the impact of electricity loads in modern households. These power losses 
have a direct impact on energy efficiency. The authors analyze the influence of reac-
tive power and higher harmonics and base their considerations based on the stud-
ies which include typical modern household receivers. Based on the measurement 
results for single receivers and simple formulas, approximate losses in low-volt-
age networks are presented. The final results show the need for further analysis 
of the topic, preceded by a more complex computer simulation.
Index terms: energy efficiency, higher harmonics, household receivers, reactive 
power

Introduction
A typical home user of electrical equipment when choosing a receiver, e.g. a light 
source, pays attention to active power consumption. This is reasonable because 
this parameter will affect the amount on the electricity bill. The fact is that active 
power consumption of typical household appliances has decreased. A good exam-
ple is the transition from incandescent light sources (e.g. a traditional light bulb) 
to LED sources, where active power consumption has been reduced many times 
while maintaining a similar luminous flux value. However, the use of LED sources 
and an increasing number of electronic receivers that use impulse power supplies 
bring an increase in reactive power consumption and deformation power, which 
results from the deformed nature of the current. This paper presents the possible 
effects of using electricity receivers that are present in the modern household, which 
brings the issue of energy efficiency.
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Increase in active power losses caused 
by the flow of reactive power

To understand the mechanism of increase in active power caused by the flow of reactive 
power, considerations should start with the relationship between active, reactive power 
and apparent power. These relationships are presented in equation 8.1 and Figure 8.1 [1]:

 S P Q� �2 2 , (8.1)
where:
S – apparent power,
P – active power,
Q – reactive power.
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FIGURE 8.1. Power triangle

Analyzing equation (1) and Figure 8.1, it can be observed that an increase of active 
power P or reactive power Q causes an increase of apparent power S. The value 
of apparent power defines the RMS value of the current flowing through the grid 
according to the relation form equation (2):

 
I S

U
= , (8.2)

where:
I – RMS value of current intensity,
U – RMS value of voltage.

Active power losses resulting from the presence of resistance of the three-phase 
low-voltage network can be calculated based on equation (8.3) [2, 3, 4, 5, 6, 7]:
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where:
∆P – active power losses,
R – resistance of single-phase wire,
tgφ – power factor (tangent).
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Here it can be seen that an increase in reactive power will result in an increase 
in apparent power and thus in a value of effective current. A loss of active power 
in a grid resistance is proportional to the square of this value. Equation (3) also shows 
the dependance of these losses on the power factor in the form of tangents. The for-
mula (8.4) [8] and Figure 8.2 show a relative increase of active power losses based 
on the power factor in the form of cosine.
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, (8.4)

where:
δ∆P – relative increase of active power losses caused by reactive power flow,
cosφ – power factor (cosine).
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FIGURE 8.2. Characteristics of relative increase of active power loss as a function of power fac-
tor values

With a power factor of 0.82, active power losses increase by 50% compared 
to no reactive power state, and with a value of 0.71 – an increase by 100%.

In addition to the active power losses in the resistance of household power sup-
ply cables, there is also an increase in the load active power losses in the power supply 
transformer, resulting from the flow of the current with a higher RMS value through 
transformer windings which, like power supply cables, have their resistance.

φ
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Increase in active power losses caused 
by the flow of distorted current

A. Increase in active power losses caused by increase in apparent power
The effects of reactive power flow associated with an increase in RMS value of the cur-
rent become more pronounced when dealing with distorted current consumption. 
The power triangle in Figure 8.1 is then supplemented for deformation power, which 
modifies the mentioned figure to the spatial form of the so-called power cuboid [9] 
presented in Figure 8.3.
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FIGURE 8.3. Power cuboid

The apparent power can then be determined by means of formula (8.5):

 S P Q D� � �2 2 2 , (8.5)
where:
D – deformation power.

The mechanism of increasing active power losses is analogous to the previous 
point of the paper.

B. Impact of higher harmonics on wire losses
When analyzing the impact of higher harmonics, two points should be noted:
 y skin effect,
 y summation of higher harmonics of every third order in a neutral wire N or pro-

tective earth neutral wire PEN.

A skin effect is an increase in the resistance of a wire for high frequency currents. 
A higher frequency causes that the flow is not uniform throughout the cross-sec-
tion. The density of the current in the middle of the cross-section decreases, which 
makes it practically inactive and the density in the part distant from the middle 
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of the cross section increases. The useful cross-section of the wire is reduced, which 
results in the resistance increase depending on the height of frequency of the flow-
ing current according to formula 8.6 [10, 11]:

 Rh = δRh ∙ RDC ≈ h  ∙ RDC, (8.6)
where:
Rh – wire resistance for h-th harmonic flow,
δRh – wire resistance gain factor for h-th harmonic flow,
RDC – wire resistance for DC current,
h – harmonic order.

An increase in resistance for a given current RMS value will lead to an increase 
in active power losses in the wires where the current containing higher harmonics 
will flow, as shown by formula 8.7 [10]:

 ( )2
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∆ = ⋅∑ , (8.7)

where:
Ih – RMS value of current intensity of h-th harmonic.

When considering a power supply consisting of three-phase wires and a neutral 
wire, formula (8.7) can be modified to (8.8) [11]:
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where:
IhL1,L2,L3,N

 – RMS value of current intensity of h-th harmonic in individual wires.

Based on the fact that active power losses, in the absence of higher harmonics, 
are caused by the first harmonic, it is possible to present a relative increase of active 
power losses caused by the flow of distorted current by means of relation (8.9) [11]:
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where:
δ∆P – relative increase of active power losses caused by the flow of distorted current.

Focusing on a single phase, a relative increase in active power losses in a single 
phase can be presented using formula (8.10):
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Another phenomenon that increases the losses of active power is the accumulation 
of h-th higher harmonics of the current in the N or PEN wire. They form symmetri-
cal systems of the zero order [12], which makes it possible that in the situation when 
identical single-phase receivers are connected to three different phases, in a neutral 
wire e.g. a third harmonic with the amplitude being the sum of the harmonic ampli-
tudes of the third harmonics of individual receivers will be present, as shown by for-
mula (8.11) and Figure 8.4 [13]. Such a situation would not occur if the mentioned 
receivers were linear. By combining the summation of the mentioned harmonics 
and the skin effect, it can be observed that an increase of active power losses in the N 
or PEN wire can be significant.

 ( ) ( ) ( )N R S T R 3n S 3n T 3n
n 1

I I I I I I I


=

 = + + = + + ∑ , (8.11)

where:
n – natural number,
IR(3n) – RMS value of current intensity of 3n-th harmonic in R-phase wire,
IS(3n) – RMS value of current intensity of 3n-th harmonic in S-phase wire,
IT(3n) – RMS value of current intensity of 3n-th harmonic in T-phase wire.
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FIGURE 8.4. Relationship between successive harmonics in three phases
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C. Impact of higher harmonics on transformer losses

Just like in the wires, one of the reasons for the increase in active power losses 
in a transformer is the skin effect, which increases the resistance of its windings. 
Additionally, the presence of higher harmonics causes an increase in core losses from 
eddy currents and hysteresis losses [14].

The influence of eddy currents on the losses of active power can be presented 
by means of the K factor described in relation (8.12), which refers to the ratio of these 
losses in the course of a deformed current flow to losses during sinusoidal flow [15].
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where:
Irms – RMS value of current intensity

ANALYSIS OF CURRENTS AND POWER RECEIVED 
BY SELECTED HOUSEHOLD RECEIVERS

A. Measurement results
To make the measurements, the Sonel PQM-701 power quality meter was applied. 
For this purpose, the measuring system with the diagram shown in Figure 8.5 was 
used [13, 16].

RECEIVER

CLAMP METER C-6

N

L

POWER STRIP
POWER QUALITY ANALYZER

USB CABEL
USB

START

STOP
P1...4

PQM-701
Sonel

AC SOURCE

LAPTOP

FIGURE 8.5. Diagram of the measuring system
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The measurement of a single receiver lasted about one minute and included sev-
eral 10-second measurement cycles. One of the middle cycles was selected in order 
to avoid the influence of transient states during switching on and off the tested devices. 
During the measurement, selected electrical parameters as well as current and volt-
age waveforms were recorded.

Table 8.1 presents the results of measurements of electrical parameters of selected, 
representative receivers in a typical household. Reactive power marked with a minus 
means it has a capacitive character.

Figures 8.7 – 8.12 present current waveforms of selected receivers and their har-
monic spectra. More receivers were overviewed in [13].

TABLE 8.1 Values of active power, reactive power, deformation power, complex power, power 
factor PF (cosine) and total distortion factor of current THDi 

Device P [W] Q [var] D [var] S [VA] PF [–] THDi [%]

Satellite 
receiver

17.14 -6.77 28.59 34.02 0.51 152.43

Home 
Cinema

39.94 -1.70 61.29 72.85 0.54 152.69

Smartphone 
charger No. 1

13.35 -2.05 20.41 24.47 0.55 147.76

Smartphone 
charger No. 2

6.94 -1.44 10.08 12.32 0.56 138.54

Tablet 
charger

12.60 -3.24 20.65 24.40 0.52 155.86

Video game 
console

112.10 -32.44 39.67 123.25 0.91 34.04

Compact 
fluorescent 
lamp

8.00 -3.94 9.55 13.07 0.61 107.31

LED lamp 
No. 1

6.27 -7.06 7.21 11.88 0.53 75.40

LED lamp 
No. 2

12.40 -5.30 15.92 20.86 0.60 117.91

Laptop No. 1 8.00 -8.04 21.50 24.31 0.33 187.32
Laptop No. 2 13.40 -6.62 28.73 32.38 0.41 183.35
Desktop 
computer

72.87 4.34 74.51 104.31 0.70 101.97

LCD monitor 40.00 -6.08 61.40 73.53 0.54 149.99
LCD TV 135.69 -46.61 27.79 146.14 0.93 19.80
LED TV 44.00 -11.99 68.04 81.91 0.54 147.21
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FIGURE 8.6. Current and voltage waveforms for LED source
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FIGURE 8.7. Harmonic spectrum of current received by LED source
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FIGURE 8.8. Current and voltage waveforms for LED TV
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FIGURE 8.9. Harmonic spectrum of current received by LED TV
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FIGURE 8.10. Current and voltage waveforms for laptop
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FIGURE 8.11. Harmonic spectrum of current received by laptop

B. Analysis of measurement results
Most of the receivers presented above receive strongly distorted current, as evidenced 
by the THDi value exceeding 100%. 13 out of 17 receivers presented in Table 8.1. This 
consumed more of the deformation power than the active power and in case of laptops 
more than twice as much. Figures 8.7, 8.9 and 8.11 show that in the harmonic spectrum 
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of received impulse currents, mainly odd harmonics are present, whose amplitude 
decreases with a harmonic order increase. The third harmonic has the highest value, 
and a significant value of the ninth harmonic can also be observed.

Capacitive reactive power consumption is also noticeable, which is about 25% 
of the value of the active power consumption of the presented set of receivers.

To observe the approximate effect of reactive power consumption and deformed 
current on active power losses, calculations were made on the basis of formulas (4) 
and (10), the results of which are presented in the tabular Table 8.2. The calculation 
assumes that the resistance of circuit is 1.5 Ω.

TABLE 8.2 The results of calculations presenting the approximate influence of modern receiv-
ers on the loss of active power in power supply wires

Device cosφ [–] δΔPQ [%] δΔPh [%] ΔP [mW] ΔPQ [mW] ΔPh [mW]

Satellite receiver 0.93 13.50 553.83 8.33 1.12 46.14
Home Cinema 1.00 0.18 532.91 45.23 0.08 241.05
Smartphone charger 
No. 1

0.99 2.30 521.88 5.05 0.12 26.37

Smartphone charger 
No. 2

0.98 4.13 494.12 1.37 0.06 6.75

Tablet charger 0.97 6.20 658.20 4.50 0.28 29.63
Video game console 0.96 7.73 21.34 356.33 27.53 76.04
Compact 
fluorescent lamp

0.90 19.52 271.12 1.81 0.35 4.92

LED lamp No. 1 0.66 55.91 119.69 1.11 0.62 1.33
LED lamp No. 2 0.91 15.45 336.01 4.36 0.67 14.65
Laptop No. 1 0.71 50.25 1043.49 1.81 0.91 18.94
Laptop No. 2 0.90 19.62 887.98 5.09 1.00 45.21
Desktop computer 1.00 0.35 206.78 150.57 0.53 311.34
LCD monitor 0.99 2.26 511.42 45.37 1.02 232.02
LCD TV 0.95 10.55 7.88 522.07 55.10 41.14
LED TV 0.96 6.91 491.13 54.90 3.79 269.61
Total 1207.91 93.21 1365.15

It should be emphasized that the results of the calculations presented 
in Table 8.2 in the case of reactive power are reliable. However, in the case of har-
monic influence they are approximate due to the complexity of the problem, which 
in the presented solutions is considered in a simplified way using the assumption that 
the increase of resistance for a given harmonic is proportional to h.
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Conclusions
The presented measurement results show that electrical energy receivers in a mod-
ern household – despite low active power consumption – entail passive and defor-
mation power consumption, the latter of which, by significant values, has a notice-
able impact on the value of apparent power. As mentioned in the theoretical part, 
an increase in apparent power is equivalent to an increase in the effective cur-
rent value and thus losses of active power in the resistance of the wires of the low- 

-voltage network and the transformer windings. However, the theoretical considera-
tions based on measurements of single receivers are not reliable because while the reac-
tive power can be summed up, for the deformation power it is not as simple, which 
can be observed in [13], where separate measurements of two single LED sources 
and measurements of the same sources switched on simultaneously are presented. 
You can see that while the sum of the reactive power is similar, the sum of the defor-
mation power already diverges. This is due to the fact that harmonics of the same 
order in two different receivers may have a different phase shift and thus the result-
ant spectrum will look different. 

In order to take into account the approximate influence of higher harmonics, cal-
culations were made based on the effective values of individual harmonics included 
in [13]. The results are presented in Table 8.2 together with the results of calcula-
tions of active power losses resulting from reactive power. The losses of active power 
caused by the flow of reactive power and deformed currents received by the selected 
set of receivers may amount to about 120% of the active power losses present 
in the absence of the mentioned phenomena. Assuming that similar devices are pre-
sent e.g. in a housing estate consisting of 500 apartments, these losses may amount 
to approx. 700 W in the wires alone. It should be noted, however, that the increase 
of power losses from the flow of distorted current, which is the main component 
of additional losses, was calculated using the simplification of the proportionality 
of the conductor resistance to √h, which could overstate the obtained result.

It should be noted that losses are not limited to wires only. A sensitive device 
is also the transformer, which, nonetheless, was not included in the above calculations.

The presence of the 3rd and 9th harmonics can additionally increase these losses 
in the N or PEN wire because the harmonics of these orders can accumulate there.

From the analysis of the presented measurement results it can be concluded that 
modern electricity receivers commonly used in households, despite the low con-
sumption of active power, are characterized by a noticeable consumption of reac-
tive power and distorted current. A single household is not a big problem, but when 
all the apartments are added together, e.g. housing estates, these values can reach 
a high level. As mentioned in the previous paragraph, theoretical considerations 
can only outline the problem, due to the difficulty of interpreting individual results. 
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However, this urges the need to inspect the actual values of individual power and cur-
rent flows consumed by individual apartments, blocks of apartments or housing estates 
in order to verify the real scale of the influence of modern households on energy 
efficiency.

Authors: G. Hołdyński(e-mail: g.holdynski@pb.edu.pl), K. Szadkowski (e-mail: 
szadek19977@wp.pl), Bialystok University of Technology, Faculty of Electrical 
Engineering, Wiejska 45D Str., 15-351 Bialystok, Poland.
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