One generalization of the Euler-Maclaurin formula Olga A. Shishkina

Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
olga_a_sh@mail.ru

We consider the problem of the multiple summation namely the problem of finding the sum of the form $\sum_{\|t\| \leq x} \varphi(t)$, where $\varphi(t)=\varphi\left(t_{1}, \ldots, t_{n}\right)$ is a given function and $\|t\|=t_{1}+\ldots+t_{n}, t_{j}$ are non-negative integer numbers. Sometimes this summation is referred "triangle"' summing. When φ is the function of one variable, then this sum can be written as

$$
S(x)=\sum_{\|t\| \leq x} \varphi(x-\|t\|) .
$$

It is shown that it satisfies the difference equation $(\delta-1)^{n} S(x)=\varphi(x+n)$, where $\delta f(x)=f(x+1)$, that makes it be possible to solve the problem of summation. Analogue of the Euler-Maclaurin formula for the sum $S(x)$ will be written the following way

$$
S(x)=\sum_{\mu=0}^{n-1} \frac{B_{\mu}(m)}{\mu!} P_{n-\mu} \varphi(x+n)+\sum_{\mu=0}^{\infty} \frac{B_{\mu+n}(m)}{(\mu+n)!} D^{\mu} \varphi(x+n)
$$

where $P_{n-\mu} \varphi(x+n)$ is primitive of order $n-\mu$ of the function $\varphi(x+n)$, and $B_{\mu}(m)$ are generalized Bernoulli numbers.
[1] Shishkina, O.A., The Euler-Maclaurin Formula and Differential Operators of Infinite Order, Journal of Siberian Federal University, Mathematics \& Physics, 8(1) (2015), 86-93.

