Non-Ergodic Lotka-Volterra Operators Mansoor Saburov

Department of Computational & Theoretical Sciences Faculty of Science, International Islamic University Malaysia P.O. Box, 25200, Kuantan, Pahang, Malaysia msaburov@gmail.com, msaburov@iium.edu.my

Let $S^{m-1} = \{x = (x_1, \dots, x_m) \in \mathbb{R}^m : x_i \ge 0, \sum_{i=1}^m x_i = 1\}$ be the (m-1)-dimensional standard simplex. A mapping $V : S^{m-1} \to S^{m-1}$, V(x) = x' such that $x'_k = \sum_{i,j=1}^m p_{ijk} x_i x_j$ for all $x \in S^{m-1}$ and for all $k = \overline{1,m}$ is called a quadratic stochastic operator (in short q.s.o.), where $p_{ijk} = p_{jik} \ge 0$ and $\sum_{k=1}^m p_{ijk} = 1$ for all i, j, k. Based on some numerical calculations, S.M. Ulam conjectured [1] that the ergodic theorem holds true for any q.s.o. V, that is the limit $\lim_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} V^{(k)}(x)$ exists for any $x \in S^{m-1}$ where $V^{(k+1)} = V \circ V^{(k)}$. However, M.I. Zakharevich showed [2] that Ulam's conjecture is false in general. Namely, for the q.s.o. $V : S^2 \to S^2$, V(x) = x' where $x'_1 = x_1^2 + 2x_1x_2, x'_2 = x_2^2 + 2x_2x_3$, and $x'_3 = x_3^2 + 2x_1x_3$, the limit $\lim_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} V^{(k)}(x)$ does not exist for any $x \in \operatorname{Int} S^2 \setminus \{(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})\}$. A mapping $V : S^{m-1} \to S^{m-1}$ is called a Lotka-Volterra operator (in short LV-

A mapping $V : S^{m-1} \to S^{m-1}$ is called a Lotka-Volterra operator (in short LVoperator) if every face of the simplex is invariant under V, i.e., one has that $V(S_{\alpha}) \subset S_{\alpha}$ for any $\alpha \subset \{1, \dots, m\}$ where $S_{\alpha} = conv\{e_k\}_{k \in \alpha}$ and $\{e_k\}_{i=1}^m$ is the standard basis of \mathbb{R}^m . An LV-operator is a discrete analogy of a generalized predator-prey model. It is worth of mentioning [3] that a q.s.o. is an LV-operator if and only if $p_{ijk} = 0$ whenever $k \notin \{i, j\}$. In the paper [4], a necessary condition was provided for ergodicity of q.s.o. defined on the 2D simplex. In other words, Zakharevich's result was generalized in some class of LV-q.s.o.

Let $f: S^2 \to [-1, 1]$ be any C^1 -smooth functional (having the first order continuous partial derivatives). We define an LV-operator $V_f: S^2 \to S^2$, $V_f(x, y, z) = (x', y', z')$ as follows x' = x[1 + (ay - bz)f(x, y, z)], y' = y[1 + (cz - ax)f(x, y, z)], z' = z[1 + (bx - cy)f(x, y, z)] where $a, b, c \in [-1, 1]$. It is clear that if $f \equiv const$ then the LV-operator V_f is a q.s.o. which was studied in the paper [4]. In this paper, we provide a sufficient condition in which the ergodic theorem will fail for V_f .

[1] Ulam. S.M. A collection of mathematical problems, New-York, London, 1960.

[2] Zakharevich M.I. On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex, *Russian Math Survey* **33** (6) (1978), 207–208.

[3] Mukhamedov F., Saburov M. On dynamics of Lotka-Volterra type operators, *Bull. Malay. Math. Sci. Soc.* **37** (1) (2014), 59–64.

[4] Ganikhodzhaev N.N., Zanin D.V. On a necessary condition for the ergodicity of quadratic operators defined on the two-dimensional simplex, *Russian Math Survey* **59** (3) (2004), 161–162.