| | | | | Bial | ystok Univ | ersity of | Technolog | y | | | |---|---|------------|---------|-------------|------------|-----------|---------------------------------|--|--|-------------| | Field of study | Computer Science | | | | | | Degree level and programme type | Master's degree full-time
programme | | | | Specialization/ diploma path | Biometry and Image Processing | | | | | | | Study profile | acad | lemic | | Course name | Human-Machine Interaction Course code | | | | | | | | INF2ICM | | | Course name | Course type | | | | | | | | obligatory | | | Forms and number of hours | L | С | LC | Р | SW | FW | S | Semester | | 3 | | of tuition | 15 | | | | 30 | | | No. of ECTS credits | | 3 | | Entry requirements | | 5.1 | | | | | | | | | | Course objectives | The aim of the course is to present issues related to human-machine interaction and information that will allow the design of interfaces for selected ways of human-machine interaction. | | | | | | | | | | | Course content | lectures: 1. Introduction to human-machine interaction. 2. Interfaces and methodology for the evaluation of human-machine interfaces. 3. Basic interaction technologies: optical, acoustic, tactile, movement and biometric. 4. Selected input devices and ways of interaction. Practical classes: 1. Motion detection using selected sensors. 2. Face detection in human-machine systems. 3. Practical tasks related to human-machine interfaces. 4. Sample topics: voice control, hand gestures etc. 5. Implementation of human-machine interaction algorithms. | | | | | | | | | | | Teaching methods | | | | ing, progra | amming, | | | | | | | Assessment method | L: Test at the end of lectures. Pc: A prerequisite for getting credit is attendance and all exercises provided for in the program. Reports from a specialist workshop apply. Each report is subject to evaluation. Based on individual assessments, the grade from Pc. | | | | | | | | | | | Symbol of learning outcome | | | | | | | | | Reference to the learning
outcomes for the field of study | | | LO1 | knows and understands the concepts associated with human-machine interfaces and ways of interaction | | | | | | | | INF2_W05
INF2_U02 | | | LO2 | has structured knowledge about the ways of human-machine interaction | | | | | | | | INF2_W05 | | | LO3 | can use the acquired knowledge for the practical implementation of sample human-machine interfaces | | | | | | | | INF2_U02
INF2_U08 | | | LO4 | uses the role of interfaces and the importance of human-machine interaction in modern reality | | | | | | | | INF2_U08
INF2_K01 | | | Symbol of learning outcome | Methods of assessing the learning outcomes | | | | | | | | Type of tuition during which the outcome is assessed | | | L01 | test, reports | | | | | | | | L, Pc | | | LO2 | test | | | | | | | | L | | | L03 | reports | | | | | | | | Pc | | | L04 | reports | | | | | | | | Рс | | | | ı | | Student | workload | (in hours) | | | | No. of | hours | | Calculation | 1 - Participation in lectures - 15x1h | | | | | | | | 15 | | | | 2 - Participation in classes - 15x2h | | | | | | | | 30 | | | | 3 - Preparation of laboratory or studio reports and / or carrying out homework (homework) - | | | | | | | | 15 | | | | 4 - Participation in teacher hours - | | | | | | | | 5 | | | | 5 - Implementation of project tasks (including preparation of presentations) - | | | | | | | | 5 | | | | 6 - Preparation for passing finale test - | | | | | | | | 5 | | | | | TOTAL: | | | | | | | 75 | | | | | | Quant | itative ind | licators | | | | HOURS | No. of ECTS | | Student workload - activities that require direct teacher participation | | | | | | | | 50
(2)+(1)+(4) | 2.0 | | | Student workload - practical activities | | | | | | | | | 50
(2)+(3)+(5) | 2.0 | | Basic references Supplementary references | Jia Zhou , Gavriel Salvendy (Eds.) Human Aspects of IT for the Aged PopulationApplications in Health, Assistance, and Entertainment LNCS International Conference, Las Vegas, NV, USA, July 15–20, 2018. Rajkumar R., de Niz D., Klein M., Cyber-physical systems, Addison-Wesley Publ., 2017. Murphy R. R., Disaster robotics, Cambridge London The MIT Press, 2014. Ryszard S Choraś, Image processing and communications challenges, Berlin Springer 2010. Bednarczyk H., Leszek W., Wojciechowicz B., Relacje edukacyjne człowiek-maszyna, Wydaw. Instytutu Technologii Eksploatacji, 1995. Hollifield B., Oliver D., Nimmo I., HabibiE., The High Performance HMI Handbook, Plant Automation Services, 2008. Guccione S., McKirahan J., Human Machine Interface: Concepts and Projects, Industrial Press, 2016. Yuen P. C., Tang Y. Y., Wang P. S., Multimodal: Interface for Human-Machine Communication, World Scientific Publishing Company, 2002. Roth E.M., Bennett K.B., Woods D.D., Human interaction with an "intelligent" machine, International Journal of Man-Machine Studies, November 1987, Pages 479-525. Dudek G., Jenkin M.: Computational Principles of Mobile Robotics , Cambridge University Press, 2000. HCI International 2016 - Posters' Extended Abstracts: 18th International Conference, HCI International 2016, Toronto, Canada, July 17-22, | | | | | | | | | | | Organisational unit | l . | roceedings | | | | | | | | | | conducting the course | Department of Digital Media and Computer Graphics | | | | | | | | Date of issuing the programme | | | Author of the programme | dr inż. Teodora Dimitrova-Grekow | | | | | | | May 22, 2020 | | | L – lecture, C – classes, LC – laboratory classes, P – project, SW – specialization workshop, FW – field work, S – seminar wydrukowane w programie **Swierk** , © 2013-2021 Cezary Bołdak