Field of study

Computer Science

Degree level and programme type

Engineer's degree full-time programme

Specialization/ diploma path

Study profile: academic

Course name

Linear Algebra and Analytic Geometry 2

Course code

FCS-00060

Course type

obligatory

Forms and number of hours of tuition

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>LC</th>
<th>P</th>
<th>SW</th>
<th>FW</th>
<th>S</th>
<th>Semester</th>
<th>No. of ECTS credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Entry requirements

-

Course objectives

The aim of the course is to familiarize students with more advanced notions, theorems and methods of Linear Algebra, and their connections with Analytic Geometry.

Course content

- Classes and lectures:
 - Specialization workshop: Eigenvalues and eigenvectors of linear endomorphisms, Jordan form of a matrix, bilinear forms, quadratic forms, Conic sections and quadric surfaces

Teaching methods

Informative lecture, lecture problem, classic problem method, programming, subject exercises,

Assessment method

Lecture: written test

Classes: two written in-class tests

Specialization workshop - evaluation of reports

Symbol of learning outcome

LO1
recalls basic notions and theorems of Linear Algebra and Analytic Geometry, illustrates them by examples

LO2
presents correct mathematical reasonings using tools of Linear Algebra and Analytic Geometry

LO3
finds eigenvalues and eigenvectors of a matrix, checks the diagonalizability of a matrix

LO4
applies Gram-Schmidt process, finds orthogonal projection on a subspace, forms direct sums of linear spaces, forms quotient spaces

LO5
finds canonical form of quadratic forms, checks if a matrix is positive (negative) definite

Reference to the learning outcomes for the field of study

<table>
<thead>
<tr>
<th>Learning outcomes</th>
<th>Reference to the learning outcomes for the field of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO1</td>
<td>K_W01</td>
</tr>
<tr>
<td>LO2</td>
<td>K_W01, K_U01</td>
</tr>
<tr>
<td>LO3</td>
<td>K_W01, K_U01</td>
</tr>
<tr>
<td>LO4</td>
<td>K_W01, K_U01</td>
</tr>
<tr>
<td>LO5</td>
<td>K_W01, K_U01</td>
</tr>
</tbody>
</table>

Symbol of learning outcome

LO1
written test

LO2
written in-class tests, evaluation of reports

LO3
written in-class tests, evaluation of reports

LO4
written in-class tests, evaluation of reports

LO5
written in-class tests, evaluation of reports

Methods of assessing the learning outcomes

Type of tuition during which the outcome is assessed

<table>
<thead>
<tr>
<th>Students workload (in hours)</th>
<th>No. of hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Attendance at lectures</td>
<td>30</td>
</tr>
<tr>
<td>2 - Attendance at classes</td>
<td>30</td>
</tr>
<tr>
<td>3 - Preparation for classes</td>
<td>40</td>
</tr>
<tr>
<td>4 - Preparation for tests</td>
<td>15</td>
</tr>
<tr>
<td>5 - Preparation for test</td>
<td>15</td>
</tr>
<tr>
<td>6 - Participation in specialization workshop</td>
<td>15</td>
</tr>
<tr>
<td>7 - Participation in student-teacher sessions</td>
<td>5</td>
</tr>
</tbody>
</table>

TOTAL: 150

Student workload - activities that require direct teacher participation

<table>
<thead>
<tr>
<th>Description</th>
<th>Hours</th>
<th>No. of ECTS credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>(7)+(1)+(2)+(8)</td>
<td></td>
</tr>
</tbody>
</table>

Student workload - practical activities

<table>
<thead>
<tr>
<th>Description</th>
<th>Hours</th>
<th>No. of ECTS credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>(2)+(3)+(4)+(8)</td>
<td></td>
</tr>
</tbody>
</table>

Basic references

Supplementary references

1. T. Jankowski, Linear algebra, Politechnika Gdańska, Gdańsk, 2001

Organisational unit conducting the course

Department of Mathematics

Author of the programme

dr Krzysztof Piekarski

Date of issuing the programme

Feb. 17, 2022

Notes:

- L – lecture, C – classes, LC – laboratory classes, P – project, SW – specialization workshop, FW – field work, S – seminar