Introduction to Databases

Course Code: FCS-00096
Course Type: obligatory

<table>
<thead>
<tr>
<th>Forms and number of hours of tuition</th>
<th>L</th>
<th>C</th>
<th>LC</th>
<th>P</th>
<th>SW</th>
<th>FW</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of ECTS credits</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entry requirements:
Lecture: To acquaint students with the process of creating a relational database. Teaching how to write SQL queries to extract data from tables. Acquainting with the basics of database operation: physical organization of data in a database, indexes, and transactions.
SW: Developing the ability to create a relational database and writing SQL queries. Teaching the basics of creating new tables and views, modifying tables structures, and inserting the data.

Course objectives:
Lecture:
- Introduction to databases; Relational algebra; Integrity constraints; SQL queries; Stages of designing a relational database. Normalization of relations; Entity-relationship diagrams; Creating the relational database scheme from E/R diagrams; Defining views; The physical organization of data in the database; Indexes. DDL and DML; Query optimization; Transactions.
- Normalization of a relational database.
- SQL queries: simple queries, subqueries, grouping queries, correlated queries, subqueries after FROM and SELECT.
- Views.
- 4. DDL and DML commands.

Course content:
Lecture:
- Introduction to databases: Relational algebra; Integrity constraints; SQL queries; Stages of designing a relational database. Normalization of relations; Entity-relationship diagrams; Creating the relational database scheme from E/R diagrams; Defining views; The physical organization of data in the database; Indexes. DDL and DML; Query optimization; Transactions.
- Normalization of a relational database.
- SQL queries: simple queries, subqueries, grouping queries, correlated queries, subqueries after FROM and SELECT.
- Views.
- 4. DDL and DML commands.

Teaching methods:
Informative lecture, lecture problem, programming, subject exercises,
Lecture – written exam; specialistic workshop – tests, short tests

Assessment method:
Lecture - written exam; specialist workshop – tests, short tests

Symbol of learning outcome:
LO1 knows the rules and is able to create a relational database schema.
LO2 can write SQL queries to any relational database.
LO3 can use the DDL and DML to construct and modify a relational database schema.
LO4 describes the basics of relational database systems, mainly indexes, transactions and query optimization.

Methods of assessing the learning outcomes:
LO1 Exam, project
LO2 Exam, test
LO3 Test
LO4 Exam

Student workload (in hours):
1. Attendance at lectures - 30
2. Attendance at specialist workshops - 30
3. Preparation for specialist workshops - 25
4. Doing homework - 30
5. Participation in student-teacher sessions - 5
6. Preparation for exam - 8
7. Presence during exam - 2
8. Preparation for tests - 20

TOTAL: 150

Quantitative indicators:
<table>
<thead>
<tr>
<th>Student workload - activities that require direct teacher participation</th>
<th>No. of ECTS credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>67 (2)+(1)+(5)+(8)</td>
<td>2.7</td>
</tr>
<tr>
<td>105 (9)+(4)+(3)+(2)</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Basic references:

Supplementary references:
1. T. Kyte, Expert Oracle Database Architecture: Oracle Database 9i, 10g, and 11g Programming Techniques and Solutions, 2nd edition, APress 2010

Organisational unit conducting the course:
Software Department

Author of the programme:
dr hab. inż. Agnieszka Drużdżel, dr hab. inż. Małgorzata Krętowska

Date of issuing the programme:
Feb. 17, 2022